General Relativity In Four Hours

Moustafa Gharamti
Maxwell Institute University of Edinburgh

PS
Pentrica, Serbia
August 4. 11.134 A.E.

Joke on Quantum Gravity

* In Newtonian gravity we can solve the two-body problem analy tically, but we Can't solve the three -body problem

Joke on Quantum Gravity

* In Newtonian gravity we can solve the two -body problem analytically, but we canst solve the three - body problem

4 In G.R. we can solve the one -body problem analytically, but we can't solve the two - body problem

Joke on Quantum Gravity

* In Newtonian gravity we can solve the two-body problem analytically, but we Canst solve the three -body problem

4 In G.R. we can solve the one -body problem analytically, but we can't solve the two -body problem

* In quantum gravity/string Theory it isn'f even clear that we can solve the zero-body problem!

We can't even solve for a unique vacuum structure!

Literature

* Geometry vo Spacetime: An introduction to General Relatii) ty By Sean Carroll gr.90/9712019
* General Relativity with Applications to Astrophysics By N. Straumann

4 General Relativity: An introduction for Physicists By M.P. Hobson...

* Gravitation \forall Cosmology: Principles \forall Applications of the General Theory of Relativity By Steven Weinberg

Plan \& Warning

1) Equivalence Principle

21 Tensors + Reimannian Geomitry
31 Geodesics \forall Newtonian Lint
4) Einstein Field Eq.
5) Application" Cosmological Models ? Black Holes

Warning: I expect you to know calculus, Special Relativity \& Classical Mechanics

Nota-lions" Odd!"

* $a, b, c, d, \ldots, m, n, p, q, \ldots$ will represent spacetime in 4. $\operatorname{dim}\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$
$* \alpha, \beta, \gamma$ will represent space

$$
\left(x^{\prime}, x^{2}, x^{3}\right)
$$

* $\eta_{a b}$ is the metric of Minkowski space i.e. for S.R. \forall it given by

$$
\eta_{a b}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \quad c=1
$$

* gab is metric for curved space with signature $(-,+,+,+)$
* Sab is the keroneker delta with

$$
\begin{cases}1 & a=b \\ 0 & a \neq b\end{cases}
$$

I worked horribly shrennously, strange that one con endure that... $\varepsilon_{\text {instein } 1915}$

Equivalence Principle":

$$
\text { * } \left.\left.\begin{array}{l}
\vec{F}^{(1)}=M_{i}^{(1)} \vec{a}^{(1)}=M_{g}^{(1)} \vec{g} \\
\vec{F}^{(2)}=M_{i}^{(2)} \vec{a}^{(2)}=M_{g}^{(2)} \vec{g}
\end{array}\right\} \begin{array}{l}
\vec{a}^{(2)}=\frac{M_{g}^{(2)}}{M_{i}^{(21}} \vec{g} \\
\vec{a}^{(1)}=\frac{\Pi_{g}^{(1)}}{\Pi_{i}^{(1)}} \vec{g}
\end{array}\right\}
$$

accuracy of about one part in 10^{9} (using an experiment based on Earth gravitational field). Recently an experiment band on Sun gravitational Sild confirmed the equivalence principle to an accuracy of port in 10^{17}.

GR. 1 Postulate
"In a small Labratory falling in a gravitation d field, the Laws of physics are the same as those observed in a Newtonian inirtial frame in the absence of growitational field."

Implication of the E.P.

* Einstein Elevator: A small idealized elevator, that can perform any kind of vertical motion, including" free fall. Consider: at $t=0 \quad R \& R^{\prime}$ coincide at $t>0$. elevator accelerates with $\vec{g}=\vec{g}$

* Elevator is slow, then SR effects can be ignored
* We postulate the "E.P." V we consider that all all inhabitants of elevator have same accel rat
* Consider an event in the elevator: A light shot From left part of elevator to the right along x. dire
* Using "E,P." reference $\mathbb{R} \&$ the partich have same speed \Rightarrow inertial \Rightarrow Physics Laws valid

W.r.t. R^{\prime} : Since R^{\prime} is not inertial for the elevator then we need to use a lith trik, Consider an in finitorimal time lapse ot "during which speed of R^{\prime} can be assumed constant \Rightarrow inertial \Rightarrow Galician transformation...

$$
\Rightarrow
$$

Since the elevator is assumed to have const. \vec{g} then the new position is obtained from the old one by means of the same Galilian trasform

- we sum over small lapse of tine $t=\sum d t$.
\Rightarrow w.r.t \mathbb{R}^{\prime} at t

$$
\left\{\begin{array}{l}
\dot{t}=t \\
x=c t \\
y^{\prime}=l_{0}+\frac{1}{2} g t^{2}
\end{array} \quad \Rightarrow y^{\prime}=\frac{g}{2} \dot{x}^{2}+l_{0}\right.
$$

\Rightarrow St. line of the light ray become a curved line under, the effect of gravity.

Einstein: Gravity deflects light

$$
F=!\frac{G_{m M}}{r^{2}}
$$

Exercise 1: Repeat the previous prob. for a fast elevator ... Leads to "Render Space."

Why the Lab has to be small for the E. P. to work?
\vec{g} is globally not const. its different in direction \checkmark magnitude Causing tidal forces that have tang ible effect

Exercise 2: Free fall huge Lab with 2 particles at d aport $\forall R$ from Earth Show th t after falling I distance their speed becomes

$$
u=\frac{d}{R^{2}} \sqrt{2 G M h}
$$

numerical applicat':

$$
d=10 \mathrm{~m}, h=10 \mathrm{~km}, u=10^{-3} \mathrm{~m} / \mathrm{s}
$$

- Earth center

Einstein: Is there a Coordinals transformat that can remove the effects of gravity? If moving to an accularated from can remove the effect of a uniform gravitational field, Is there a coordinate tromsformat ${ }^{\circ}$ that can remove the effects of tidal forms?

A similar mathematical question was answered by B. Reimann in $19^{\text {th }}$ century:
"How to determine weather a certain space is flat or curved?

Einstein knew about S. R. \& the Geometry of Minkowski Space, but he realised that a more general kind of Geometry must be used that accounts to the curving that Gravity caus. In other words we need to look for mathematics that the theory must have so that E.P. is true
"Geometry, SR. \forall More"

* Her Geometry of S.R. is the Minkowskian geometry. this geometry has an invariant unit element the "metric"

$$
\int S^{2}=\sum_{m n} \eta_{m n}^{d x^{m} d x^{n}}=\underbrace{-c^{2} d t^{2}+d \vec{x}^{2}}\}
$$

\# For Euclidean space: $d \underbrace{s^{2}}=\left(d x^{\prime}\right)^{2}+\left(d x^{2}\right)^{2}+\cdots$

* For more general space "e.g. Earth"
* For arbitrary general space. The metric in

$$
d s^{2}=\sum_{m, n} g_{m n} d x^{m} d x^{n}
$$

$$
\begin{aligned}
d s^{2} & =d \vec{s} \cdot d \vec{s} \\
& =\sum_{a} d x^{a} e_{a} \sum_{b} d x^{b} e_{b} \\
& =\sum_{a b}\left(e_{a} \cdot e_{b}\right) d x^{a} d x^{b} \\
\text { Call } & \underbrace{}_{a}(x) e_{b}(x)=g_{a b}
\end{aligned}
$$

* In are the elements of the set of metric "tensor", they are symmetric, by construct" (En= Cnn $_{n}$), Can take any real value, the \# of indpendent $g_{n n}$ depends on dimension of space by The equation $\left.\frac{d(d+1)}{2}\right]^{\prime \prime} 10$ for 4. D. In general its position dependent $\underbrace{}_{m n}=g(x)$. The values of gmndepends on the coordinate grid we choose 000

Example: 2. dim flat space *with cartesian coord:: "flat"

$$
\begin{aligned}
& d s^{2}=d x^{2}+d y^{2} \nmid=\left[g_{m n}\right]=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& g_{x x}=g_{y y}=1 ; g_{x y}=g_{y x}=0
\end{aligned}
$$

* with polar coordinate: "looks curved"

$$
\begin{aligned}
& d s^{2}=d r^{2}+r^{2} d \theta^{2} \\
& g_{r}=1 \quad g_{\theta \theta}=r^{2}
\end{aligned}
$$

or flat??

How to determine weather a space is curved or just appeared curved due to an art fact caused by some unfortunate choice of coordinates?
"Following" Reimann...
Given:

$$
d s^{2}=\sum_{m n} g_{m n} d x^{m} d x^{n}
$$

\exists ? Coordinate transformation that take $d s^{2}$ to

$$
d s^{2}=\sum_{m n} \eta_{m n} d x^{m} d x^{n}
$$

WIt too much guessing, one con notice a vague similarity with Einstein question:
ヨ? A coordinate trasformat ${ }^{\circ}$ that can remove the effects of nun uniform gravity in analogue to the accelerated elevator that removed the effects of uniform gravity. Later we will see that, this is not just a similarity or analogy, there is a precise correspondence between tidal forces \& the curva - tare of space... to diagnose tidal fores we call

- wale curvature \& for fake gravity curvature is zero

To chede if a space is curved or flat we "have to learn how mn tranform, which requirs "annoying" mathematics "Tensor Analysis"
"Tensors: Objects that Transform Elegantly"
Summation Convention:
"I howe made a great discovery in mathematic e I have suppressed the summation sign every time that the summation must be made over an index which occur twice" Einstein
e.g. : $d s^{2}=\sum_{m n} g_{m n} d x^{m} d x^{n}=g_{m n} d x^{m} d x^{n}$

Consider two Coordinate Grids:
 frame

$$
\xi=\xi\left(x^{1}, x_{2}^{2}, \ldots\right)=\xi(x)
$$

"Scalar: Rank-o tensor"
e.g. Temperature. Value docent depend on frame of ref.

$$
T(x)=T^{\prime}(\xi)
$$

"Contravariant Vector" (Rank $(1,0)$ tensor)

Components of vectors in a certain choice of of coordinate grid $V=v^{m} e_{m}$
Covariant vectors (Rank (0,1) tensor)

Rank (2.0) tensor

$$
\begin{aligned}
& \left(T^{\prime}\right)^{m n}=\left(A^{\prime}\right)^{m}\left(A^{\prime}\right)^{n}=\frac{\partial \xi^{m}}{\partial x^{p}} A^{p} \frac{\partial \xi^{n}}{\partial x^{q}} A^{q} \\
& \Rightarrow \underbrace{\prime m n}=\frac{\partial \xi^{m}}{\partial x^{p}} \frac{\partial \xi^{n}}{\partial x^{q}} T^{p q}
\end{aligned}
$$

$\operatorname{Rank}(2,1)$ Ensor

$$
T^{\prime m}=\frac{\partial \xi^{n}}{\partial x^{a}} \frac{\partial \xi^{n}}{\partial x^{b}} \frac{\partial x^{c}}{\partial \xi^{p}} T_{c}^{a b}
$$

Useful Tensors Characteristics

1) If all the components of a tensor vanish in one frame of coordinates, they vanish every the flame of coordinates
2) Once we write an eqn, in a balanced tensorial form, if its true in one coordinate frame, then its true in every other coordinate frame.

Example:

$$
\begin{aligned}
& R_{a b}(x)-\frac{1}{2} g_{a b}(x) R(x)+g_{a b}(x) \Lambda=\frac{8 \pi G}{c^{4}} T_{a b}(x) \\
\Rightarrow & R_{a b}(x)-\frac{1}{2} g_{a b}(x) R(x)+g_{a b}(x) \Lambda-\frac{8 \pi G}{c^{4}} T_{a b}(x)=0
\end{aligned}
$$

\Rightarrow using the first property

$$
\begin{aligned}
& R_{a b}^{\prime}(\xi)-\frac{1}{2} g_{a b}^{\prime}(\xi) R(\xi)+g_{a b}^{\prime}(\xi) \Lambda-\frac{8 \pi G}{c^{4}} T_{\mu v}^{\prime}(\xi)=0 \\
\Rightarrow & R_{a b}^{\prime}(\xi)-\frac{1}{2} g_{a b}^{\prime}(\xi) R(\xi)+g_{a b}^{\prime}(\xi) \Lambda=\frac{8 \pi G}{c^{4}} T_{a b}^{\prime}(\xi)
\end{aligned}
$$

$g_{m n}$ is a Tensor:

In relativity time is no longan an absolute parameter, it just another coordinate $(\vec{r}=\vec{r}(t)$ is non sense in relativity). The absolute par armet er is the infinitesimal proper distance (or proper time). In other words $d s^{2}$ is the same in all coordinate frame

$$
\begin{gathered}
d s^{2}(x)=d s^{2}(\xi) \\
g_{m n}(x) d x^{m} d x^{n}=g_{p q}^{\prime}(\xi) d \xi^{p} d \xi^{q} \\
d x^{m}=\frac{\partial x^{m}}{\partial \xi^{p}} d \xi^{p} ; d x^{n}=\frac{\partial x^{n}}{\partial \xi^{q}} d \xi^{q} \\
\Rightarrow \\
g_{m n} \frac{\partial x^{m}}{\partial \xi^{p}} \frac{\partial x^{n}}{\partial \xi^{q}} d \xi^{p} d \xi^{q}=g_{p q}^{\prime} d \xi^{p} d \xi^{q} \\
\Rightarrow g_{p q}^{\prime}=\frac{\partial x^{m}}{\partial \xi^{p}} \frac{\partial x^{n}}{\partial \xi^{q}} g_{m n}^{(0,2) \text { rank }} \Rightarrow \text { Tensor }
\end{gathered}
$$

Tensor Operations "Things we do on tensor to give new tensor"

1) Addition: Only fo Tenses with same idicas
2) Maltipliation: Any kind of tussis con be multiplied

3) Raising \& Lowering:

$$
\begin{aligned}
& \vec{V} \cdot \overrightarrow{W_{0}}=V^{a} W_{a} \\
& \vec{v} \cdot \vec{w}=v^{a} e_{a} w^{a} e_{b} \\
& \text { can be done } \\
& \text { to Non } \\
& \begin{array}{l}
\text { tensors as } \\
\text { well }
\end{array} \\
& =V^{a} W^{b} g_{a b} \\
& g_{a b} W^{b}=W_{a} \\
& g_{a b}=V_{b}
\end{aligned}
$$

$4 /$ Contraction:

$$
\Rightarrow R^{R_{b a c}^{a} W_{m}=T_{m}^{m}=T \leftarrow R^{m}} \quad \text { number }
$$

Exeraje 3: Show that R^{a} base is rank $(2,0)$ tensor $\forall R_{a}$ is a scalar.
5) Covariant Derivative

Ordinary differentiation of a tensor docent give a tensor. $\frac{\partial V^{m}}{\partial x^{p}}$ is not a tensor

$$
\partial_{p} V^{m}(x)=0
$$

\Rightarrow everywhere is zero However $\partial_{r} V_{m}(\xi) \neq 0$

\Rightarrow
$\partial_{p} V^{m}$ is not a tensor

To obtain a tensor out of differeniat ing a tensor, we need a new def. for the derivative.

* In orbibrary basis when we compare benson at two different positions, two things must be taken into consideration, the change in the vector $\&$ the change in basis, hence:

$$
D_{r} V^{m}=\underbrace{\partial_{r} V^{m}}_{\text {chang in } V^{m}}+\underbrace{? r}_{\substack{\text { change basis } \\ \Rightarrow \alpha t_{0} V}}
$$

$D_{r} V^{m}=\partial_{r} V^{m}+\Gamma_{r p}^{m} V^{p}$

* $\Gamma_{r p}^{m}$ is the "Christoffel symbole", often called connection (connects neighbors)

Our Interest:

The Christoffel symbol eq.:
$\Gamma_{a b}^{c}$ is the term we added to account for change in basis \Rightarrow

$$
\frac{\partial \vec{e}_{a}}{\partial x^{b}}=\Gamma_{a b}^{c} \vec{e}_{c}
$$

Now consider:

$$
\begin{align*}
\partial_{c} g_{a b} & =\partial_{c}\left(\vec{e}_{a} \cdot e_{b}\right) \\
& =\partial_{c} e_{a} \cdot e_{b}+e_{a} \cdot \partial_{c} e_{b} \\
& =\Gamma_{a c}^{d} e_{d} e_{b}+e_{a} \Gamma_{c b}^{d} e_{d} \\
& =\Gamma_{a c}^{d} g_{d b}+\Gamma_{b c}^{d} g_{a d} . \tag{1}
\end{align*}
$$

Cyclically permute that $a_{c}{ }^{5}$

$$
\begin{align*}
& \partial_{a} g_{b c}=\Gamma_{b a}^{d} g_{d c}+\Gamma_{c a}^{d} g_{b d} \tag{2}\\
& \partial_{b} g_{c a}=\Gamma_{c b}^{d} g_{d a}+\Gamma_{a b}^{d} g_{c d} . \tag{8}
\end{align*}
$$

$\Rightarrow(1)+(2)-8$ gives

$$
2 \Gamma_{c b}^{d} g_{a d}=\partial_{c} g_{a b}+\partial_{b} g_{c a}-\partial_{a} g_{b c}
$$

using sea gad = $\delta^{e} d$ relabelling
The Connection becomes finally:

$$
\Gamma_{b c}^{a}=\frac{g^{a d}}{2}\left(\partial_{b} g_{a c}+\partial_{c} g_{b d}-\partial_{d} g_{b c}\right)
$$

* Exercise 4: Show that $e^{a} \cdot e_{6}=\delta_{b}^{a}$ hera deduce that $g^{a c} g_{c b}=\delta_{b}^{a}$
- Exercise 58 Why the connection is not a tensor? ... Can you show it using coordinate transformation?
* Exercise 6: Calculate the connection elements for the metric

$$
d s^{2}=d r^{2}+r^{2} d \theta^{2}
$$

Can you make any conclusion $a b t$ the space?

Exercise 7: Show using
$D_{m} T^{r p}=\partial_{m} T^{r p}+\Gamma_{q}^{m r} T^{q p}+\Gamma_{q}^{m p} T^{r q}$ that the metric tensor is covariantity constant

$$
D, g^{m n}=0
$$

- Exercise 8: Show that the covariant derivative of covariant vector is:

$$
D_{r} V_{m}=\partial_{r} V_{m}-\Gamma_{r m}^{r} V_{p}
$$

Deduce that the Covariant derivative of 2. tensor is given by:

$$
\partial_{m} T_{r p}=\partial_{m} T_{r p}-\Gamma_{m r}^{q} T_{q p}-\Gamma_{m p}^{q} T_{r q}
$$

"
At present I occupy myself exclucively with the pablum of growitation x now belie that Is all master all distioulties with the help of a friendly makematicien here Moral Grossmane). But one thing is carting in all my life I have newer laboured nearly as had, v I hove become imbued with great resect for mallumatios. The souter pent of which I had in my smple-mindedrens regarded as pare encany until now. Compered with this problem, the original relativity in child's play." (Enstein in a biter to A. Sumergld)

CURVATURE
*Our main conclusion of the introduct was that the question of finding out weather there is a real gravitational field or not is identical to the probbin of finding if a certain smooth metric geomety is flat or not...

* Given an arbitrary space, to know weather the space is flat or aurved, we can doit either by:

1 : Long Bad VJay
Look over all change of coordinates ψ find of there one that $g_{m n} \longrightarrow \eta_{m n}$
or 2. Look for a diagnostic quantity that characterize the space, independat of the basis chosen $\&$ Calculate it. The value will tell us if the space ir flat or Curved.

The quantity we are after is the Curvature tensor " $R_{a b c \text { ". Also }}^{\text {a }}$ called Reimann tensor. note: should not be confused wi curve

Curvature is an intrinsic property of a space, A Slat paper can be bent into a cone or cylinder ω / t distorsion, but can never be bent into a sphere w/t distorting or cumpling ...

A cone Δ cylinder have zero curvalure, However a sphere has a tue curvalure.

Reimann Tensor

Moving a vector along x^{\prime} direct w / t changing it (parallel tramport) is described by $D_{s} V_{m}$

By Def:

$$
D_{a} D_{b} V_{a}-D_{b} D_{c} V_{a}=R_{a b c}^{d} V_{d}
$$

Exercise 6: Show that the Curvature tensor is given by $R_{a b c}^{d}=$

$$
\partial_{b} \Gamma_{a c}^{d}-\Gamma_{a b}^{c} \Gamma_{e c}^{d}-(b \leftrightarrow c)
$$

* Tidal forcer stretch \forall squach, My have bigger effect on bigger objects.

Curvature has exactly
some effect as
particle moves
(5) 2. dim rubber
\forall this effect depends on the size of movingobjed

Parallel Transport

* Its moving a vector along a path while keeping it constant. "Its path dependent" in general

$$
* D_{m} V^{n} d x^{m}=D V^{n}=0
$$

The small chang in V^{n} by
going from one $p t$ to is neighbor (covariant differential change in V)

Equation
$D V^{n}=d V^{n}+\Gamma_{m r}^{n} V^{n} d x^{m}=0$

Geodesics: Extremest curve between two pts (the path on which the unit tangent is kept parallel to itself)

Wundt tangent $t^{m}=$

* When we parallel transport t^{m}

$$
\begin{aligned}
& \Rightarrow D t^{m}=0 \\
& \Rightarrow d t^{m}+\Gamma_{n}^{m} t^{n} d x^{p}=0 \\
& \Rightarrow \frac{d t^{m}}{d s}+\Gamma_{n p}^{m} t^{n} \frac{d x^{p}}{d s}=0
\end{aligned}
$$

Geodesic $\frac{d^{2} x^{m}}{d s^{2}}+\Gamma_{n p}^{m} \frac{d x^{n}}{d s} \frac{d x^{p}}{d s}=0$

GR. $2^{n d}$ Postulate:
A free body pursues a time. like geodesic in space-time.
\Rightarrow In the vicinity of gravitating body a particle moves in the straightest way possible \Rightarrow Eq. of motion for a particle is

Exercise 6: Show that the geodesic eq. gives the Newtonian theory of gravity

$$
\vec{a}=-\vec{\nabla} \phi
$$

in the limit of slow motion in a weak static field.

Newtonian limit of the Geodesic

To apply Newtonian limit for G.R. eqs.
3. requirements must be satisfied

1. The partichs are moving solubly (w.r.t.c)
2. The gravitational field is weak
3. Fields are static (unchanging w/ time)
$1^{\text {st }}$ req. $\Rightarrow \frac{d x^{i}}{d \tau} \ll \frac{d t}{d \tau}$
\Rightarrow geodesic boils down to

$$
\frac{d^{2} x^{m}}{d \tau^{2}}+\Gamma_{0}^{m}\left(\frac{d t}{d \tau}\right)^{2}=0
$$

$3^{\text {rd }}$ req.

$$
\begin{aligned}
\Gamma_{00}^{m} & =\frac{1}{2} g^{m p}\left(\partial_{0} g_{p 0}+\partial_{0} g_{0 p}-\partial_{p} g_{00}\right) \\
& =-\frac{1}{2} g^{m p} \partial_{p} g_{00}
\end{aligned}
$$

$2^{n d}$ req. (growitalional field is weak)
\Rightarrow can be considered a perturbation of flat space ... Then we can decompose the metric into Minkowski form plus small perturbat'

$$
\begin{aligned}
& g_{m n}=\eta_{m n}+h_{m n} \quad\left|h_{m n}\right|<1 \\
& \Rightarrow g^{m n}=\eta^{m n}-h^{m n} \quad g^{m n} \text { in inverse of } g_{m n} " \\
& h^{m n}=\eta^{m p} \eta^{n q} h_{p q} \\
& \Rightarrow \frac{d^{2} x^{m}}{d \tau^{2}}=\frac{1}{2} \eta^{m n} \partial_{n} h_{\circ O}\left(\frac{d t}{d \tau}\right)^{2}
\end{aligned}
$$

For $n=0 \quad \partial_{0} h_{00}=0 \Rightarrow \frac{d^{2}+}{d \tau^{2}}=0$

$$
\Rightarrow \frac{d t}{d \tau}=\text { const. }
$$

For $n=\mu$ (apace like component)
$\eta^{n v}=$ Identity matrix

$$
\begin{aligned}
& \Rightarrow \frac{d^{2} x^{v}}{d \tau^{2}}=\frac{1}{2}\left(\frac{d t}{d \tau}\right)^{2} \partial^{2} h_{00} \\
& \frac{d x^{v}}{d \tau}=\frac{d x^{v}}{d t} \cdot \frac{d t}{d \tau} \\
& \Rightarrow \frac{d}{d \tau}\left(\frac{d x^{v}}{d \tau}\right)=\frac{d^{2} x^{v}}{d t^{2}}\left(\frac{d t}{d \tau}\right)^{2}+\underbrace{\frac{d x^{v}}{d t} \cdot \frac{d^{2} t}{d \tau^{2}}}_{=0} \\
& \Rightarrow \quad \frac{d^{2} x^{v}}{d t^{2}}=\frac{1}{2} \partial^{v} h_{00}
\end{aligned}
$$

Comparing with Newton's theory of Gravity $\quad \frac{d^{2} x^{2}}{d t^{2}}=-\partial^{2} \phi$
The two eggs. are the same of:

$$
\begin{aligned}
& h_{00}=-2 \phi \\
& g_{00}=-(1+2 \phi) \\
& g_{000}=-\left(1-\frac{2 M G}{r}\right)
\end{aligned}
$$

(Space, Time, Light) Like
My g mn Signature

$$
(-+++)
$$

The - re eigen value represents time θ the three +re represents space, hence of:
-1 $d \delta^{2}>0 \Rightarrow$ Span like
$21 d s^{2}=0 \Rightarrow$ light like \&
3) $d s^{2}<0 \Rightarrow$ time like \&

Define $d \tau^{2}=-g_{m n} d x^{m} d x^{n}>0$

In space time at every pt we howe a metric \forall every pt. the signature of the metric should be the same (but necessarly the values) so at every pt. we have a light cone of different shape each depending on the metric entries value at each pt.

Light Cones Shapes near Schwarzschild black hole

The Lagrangian description of a free particle in G.R.

* Another definision of geodesic = stationary distance btw two pts (where a particle acheires a max or min
value) \Rightarrow Requires minimum time \Rightarrow Extremalize

$$
\tau=\int_{1}^{2} \sqrt{-g_{m n} d x^{m} d x^{n}}
$$

* Action $=\int \underset{\text { energ.time }}{\mathcal{L}} d t$
Energy

$$
\Rightarrow \text { Action }=-m c_{1}^{2} \int^{2} \sqrt{-g_{m n} d x^{m} d x^{n}}
$$

$$
\Rightarrow \quad \text { Aclion }=-m c^{2} \int \sqrt{-g_{m n}(x)} \frac{d x^{m}}{d t} \frac{d x^{n}}{d t} d t
$$

The Lagrangian density for a free particle in gravitational field is:

$$
\mathcal{L}=-m c^{2} \sqrt{-g_{m n} \dot{x}^{m} \dot{x}^{n}}
$$

* Now we can use the Euler Lagrange eq. To determine the eq. If motion. Hence by solely knowing the metric, we can derive the motion of particle.

Exercise 7: Use E.L. eq. to show that the trajectory of the particle is a geodesic "Hint : use \mathcal{L}^{2} insted of \mathcal{Z} "

$$
\begin{aligned}
& \text { E.L.eq.: } \frac{\partial \mathcal{L}}{\partial x^{p}}=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}^{p}} \\
& \mathcal{L}^{2}=-g_{m n} \dot{x}^{m} \dot{x}^{n} \Rightarrow \frac{\partial \mathcal{L}^{2}}{\partial x^{p}}=-\partial_{p} g_{m n} \dot{x}^{m} \dot{x}^{n} \\
& \begin{aligned}
& \frac{\partial \mathcal{L}^{2}}{\partial \dot{x}^{p}}=-g_{m n} \delta_{p}^{m} \dot{x}^{n}-g_{m n} \dot{x}^{m} \delta_{p}^{n} \\
&=-g_{p n} \dot{x}^{n}-g_{m p} \dot{x}^{m}=-2 g_{p n} \dot{x}^{n} \\
&=-\partial_{q} g_{p n} \dot{x}^{q} \dot{x}^{n}-\partial_{n} g_{p q} \dot{x}^{n} \dot{x}^{q} \\
& \frac{d}{d t}\left(-2 g_{p n} \dot{x}^{n}\right)=-2 \partial_{q} g_{p n} \dot{x}^{q} \dot{x}^{n}-2 g_{p n} \ddot{x}^{n} \\
&-2 \dot{x}^{n} \\
&+\partial_{p} g_{m n} \dot{x}^{m} \dot{x}^{n}+\partial_{q} g_{p n} \dot{x}^{q} \dot{x}^{n}+\partial_{n} g_{p q} \dot{x}^{n} \dot{x}^{q} \\
&+g_{p n} \ddot{x}^{n}=0
\end{aligned} \\
& \Rightarrow 2 g_{p n} \ddot{x}^{n}+\left(\partial_{q} g_{p n}+\partial_{n} g_{p q}-\partial_{p} g_{q n}\right) \dot{x}^{q} \dot{x}^{n}=0
\end{aligned}
$$

quavers
Wheeler: Spacetime tells matter how to move, matter tells spacetime how to curve Warning: Basic Principles are simpler Calculations are pain \& For G.R. to be true, we must have a \# of limits

"Newton Growity is one component of the real gravity * Newton didn't think about field, however they can be formalized interns of fields

$$
\begin{aligned}
& \vec{F}=-m \vec{\nabla} \phi(x)=m \vec{a} \\
& \Rightarrow \vec{a}=-\vec{\nabla} \phi(x)
\end{aligned}
$$

\leadsto Fields tell particles how to move

$$
M=\int \rho d V \text { (छ) }
$$

outside
Matter tells Gravitation solution

$$
\phi=-\frac{M G}{r}
$$

* Using $g_{00}=1+2 \phi$

$$
\Rightarrow \nabla^{2} \underbrace{}_{00}=8 \pi G \rho
$$

Geometry io determined by matter!

* The last equation which is purely derived from Newton theory implies that matter decide the geometry \rightarrow We need to study Matier ice. Energy \forall Mo mentum \forall have them in tensorial eq. No that the final form of the eq. be covarian in any frame of ref.

Density, flow \forall the continuity eq.

charge per unit volume"

Current or Charge flow "charge per unit area
per unit time" can be also thought of

* $\Rightarrow j^{\mu}$ of σ are very similar creatures they form 4 -vector

$$
j^{m}=\left(\sigma, j^{\prime} \cdot j^{2}, j^{3}\right)
$$

The "Local" Conservation of Charges
The locality means that in my lab when charges disappeared they are actually bowing through the walls in form of current (that flow through the walls)" so actually its not conservation in a quantified sense'. However. If we are really curious \forall we want to know what happened to charge disappeared from my Lab we howe to look Globaly "The charge that disappeared in my Lab in Edinburgh how appeared simultaneously per haps, in Petrica"

* The local conservation of charges or the contininty eq. is given by

$$
\begin{aligned}
& -\dot{\sigma}=\vec{\nabla} \cdot \vec{j} \\
\Rightarrow & \partial_{m} j^{m}=0
\end{aligned}
$$

Energy Momentum Tensor

* Energy can be described interns of density \Rightarrow in analogy with charge, it can flow y \forall it has continuity eq.
* Also momenta can be described in terms of density, so we have a moment um flow \& continuity eq. for momentum
* However, there is an important difference: Charge by itself is invariant, howers Energy by it self is not, also momentum by itself so not invariant, but the 4-vector (E, P^{μ}) is invariant
e^{-}for all ref. frame is the same $P_{n} P^{n}$ for all ref. frame is the same

Indies of $T^{m n}$:
$T 00 \rightarrow$ density
we are talking abl eurgy
"one time comp. of smith which" is itself so a time comp

$$
D_{n} T^{o n}=0
$$

We are talking about momentum
"thur zero components of three space like objects"

"three
Space amps of time like - bject ${ }^{*}$

$*$ Consider $T_{12} * T_{21}$

$$
\Rightarrow \int_{T_{m n}=T_{n m}} \begin{aligned}
& y \text { tow of } P_{x} \quad x \text { flow of } P_{y} \\
& T_{21}=T_{12} \\
& \Rightarrow
\end{aligned}
$$

Energy. momentum tensor is symmetric

Example: Energy -Momentum tensor of the universe on a large scale

The universe is not empty "not sure!". We usually model the matter k energy in the universe by a perfect fluid (by def. a perfect find is a continuum of matter that can be descri -bed completely by it pressure (P) \& curry density pleas it look isotropic in its rest frame).

4 In the rest frame, the fluid is at rest \& isotropic

$$
\begin{aligned}
\text { Isotropic } & \Rightarrow T_{a b} \text { is diagonal } \\
& \mathbb{T _ { 1 1 } = T _ { 2 a } = T _ { 3 }}
\end{aligned}
$$

at rest $\Rightarrow U^{n}=(1,0,0,0)$
4 for $d s^{2}=-d t^{2}+g_{p r} d x^{n} d x^{\prime}$

Exercise:

In perfect Shin, all particles have equal velocity in any fixed inertial frame, Show (argue) that in general the Energy-momentum is given by:

$$
T_{\mu v}=(p+\rho) u_{\mu} u_{v}+p g_{\mu v}
$$

$\rho \forall P$ are the energy density and prossure. $U^{\prime \prime}$ is the 4 . velocity of the flied.

* Recall that $\nabla^{2} g_{00}=8 \pi G \rho$ But $\rho=T_{00}$ (c.g. $V_{x}=W_{k} \Rightarrow$ $\vec{V}=\vec{W}$), offence $\nabla^{2} g_{00}=8 \pi 6 \rho$ ir zero-zero comp. of a tensor eq. that has, $8 \pi G T_{o b}$, on one side of the equal sign.

$$
\Rightarrow \quad ?_{a b}=8 \pi G T_{a b}
$$

\& If we denote the L.H.S. G $\mu \nu \Rightarrow$

$$
G_{a b e} 8 \pi 6 T_{a b}
$$

G ab describes Geometry

$$
\begin{aligned}
& G_{a b}=G_{a b}\left(\nabla^{2} g_{\mu v}, \ldots\right) \\
& G_{a b}=G_{b a} \\
& D_{a} G^{a b}=0
\end{aligned}
$$

What is $G^{a b}$?
We've sen that the real Reimann geometry If manifold" Space that are locally flat" is characterized by a metric, connection \& curvature Rate $g_{a b} \Gamma_{b c}^{a}$ "Not tensor"
$R_{\text {abe }}^{\text {o }}$ determine everything about geometry" zero every where, flat everywhere"
\Rightarrow Gab must be related to it.

Properties of Rabed
If we sub. in $R_{a b c d}=g_{a f} R_{b c d}^{p}$ the connection, we get

$$
\begin{aligned}
\Rightarrow & R_{a b c d}= \\
& \frac{1}{2}\left(\partial_{d} \partial_{a b} g_{b c}-\partial_{d} \partial_{b} g_{a c}+\partial_{c} \partial_{b} g_{a d}-\partial_{c} \partial_{a} g_{b d}\right) \\
& -g^{g f}\left(\Gamma_{c a c} \Gamma_{f b d}-\Gamma_{\text {cad }} \Gamma_{f b c}\right)
\end{aligned}
$$

Symmetries in Rabco
To know the symmetries, enough to examine 1 ${ }^{\text {st }}$ part
\therefore

$$
\begin{aligned}
R_{a b c d} & =-R_{b a c d} \\
R_{a b c d} & =-R_{a b d c} \\
R_{a b c d} & =R_{c d a b}
\end{aligned}
$$

Manifold: Topologies apace that is locally ghat * Using the fact that our manifold is locally flat "Geometrically, means that at each p^{t}. in space we can approximate ow r space, to linear order, w/ tangent space at each pt.). Then locally at any pl. "sa yep" means

$$
\left\{\begin{array}{c}
g_{m n}=\eta_{m n} \\
\partial_{p} g_{m n}=0 \\
\partial_{p}^{2} g_{m n}, \partial^{3} g_{m n}, \ldots \neq 0
\end{array}\right.
$$

* A propertythat is valid for $R_{\text {abed }}$ in the in the tangent space ref. at P should be valid any where, then we can use the reduced form of Rabed at $P \&$ find the other properties

Exercise 8: Using the reduced eq. for Rabed show Rabed satisfy the "Cyclic Identity"

$$
R_{a b c d}+R_{a c d b}+R_{a d b c}=0
$$

* the "Branch Identity"

$$
D_{c} R_{a b c d}+D_{c} R_{a b d e}+D_{d} R_{a b e c}=0
$$

Exercise 9: Using the symmetries $\&$ properties of Rabed, Show that in d.spacatime, the d^{4} component of Rabid reduces to $\frac{d^{2}\left(d^{2}-1\right)}{12}$

Rice i Tensor:

$$
R_{a c}=R_{a b c}^{b}
$$

From Cyclic identity

$$
R_{a c}=R_{c a}
$$

Exercise 10: Show that

$$
R_{a b}=\partial_{c} \Gamma_{a b}^{c}-\partial_{b} \Gamma_{a c}^{c}-\Gamma_{a c}^{d} \Gamma_{d b}^{c}+\Gamma_{a b}^{d} \Gamma_{d c}^{c}
$$

Ricci Scalar

$$
R=g^{a b} R_{a b}=R
$$

* Gathering all the symmetric geometric objects that we have

$$
\begin{aligned}
& g_{a b}, R_{a b}, g_{a b} R \\
\Rightarrow & G_{a b}=\alpha R_{a b}+\beta g_{a b} R+\Lambda g_{a b}
\end{aligned}
$$

Exercise 12: Show using $D_{a} G^{a b}=0$ that $\alpha=1, \beta=-\frac{1}{2}$, arbiliary

$$
\Rightarrow G_{a b}=R_{a b}-\frac{1}{2} g_{a b} R+\Lambda g_{a b}
$$

Putting everything together

$$
R_{a b-\frac{1}{2}} g_{a b} R+\Lambda g_{a b}=8 \pi G T_{\mu v}
$$

No Source Erg.

$$
\begin{aligned}
R_{a b} \frac{1}{2} g_{a b} R & =0 \\
\Rightarrow R_{a b} & =\frac{1}{2} g_{a b} R \\
R_{a}^{b} & =\frac{1}{2} \delta_{a}^{b} R \\
\Rightarrow R_{a}^{a} & =\frac{1}{2} \delta_{a}^{a} R \\
\Rightarrow R & =2 R \\
\Rightarrow R & =0
\end{aligned}
$$

$$
\Rightarrow R_{a b}=0 \quad\left(\nRightarrow R_{a b c d}=0\right)
$$

The spore is called Ricci flat, doesn't mean that the space is flat (the curvature tensor so not zero).

Solutions for this eq. wifor example, the Sch war zchild black hole, which is the metric for a space out side a spherical massive body (atty in the space other than the spherically symmetric B.I.)
Also gravitational waves is another example of solutions for Rice flat spaces.

* You will be convinced of the general theory of relativity once you have studied it. Therefore In not going to depend it with a single word. " Einstein"

Schwarzchild Solution $\left(R_{\mu s}=0\right)$

1. Spherically symmetric body with map M
2. Field static ($g_{i j}$ are time ind.)
3. Spacetime is empty
4. Spacations is asymptotically flat

$$
\begin{gathered}
\Rightarrow \\
d s^{2}=-\left(1-\frac{2 M G}{c^{2} r}\right) d t^{2}+\frac{d r^{2}}{\left(1-\frac{2 M G}{c^{2} r}\right)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
\end{gathered}
$$

Reisner. Nordstöm Solution All assumptions of Schwarzchild are taken here but the gravituting body has now charge Q.
\Rightarrow the only difference is:

$$
g_{00}^{R N}=g_{00}^{\text {sh }}+\frac{Q^{2}}{4 \pi r^{2}} \quad g_{11}^{R N}=\frac{1}{g_{00}^{R N}}
$$

+ Kerr solution" Rotating gravitational body \rightarrow nosphericial symuitry
+ F.R.W. solution... heck "The large structure of paction" for S. Hawking

Cosmology
Rules:

1. The universe is pretty much the same everywher \Rightarrow

Isotropy" No matter what direction you
look in at some apeafic pt. space looks the same ́ Invariac under Rotation.

* Homogeneity "The metric is the same throughout the space". "Invariance under translation.

2. The universe is not static \Rightarrow
space is isotropic \forall homogeneous in space but not in time.

In G.R. this mans that the universe can be foliated into spacelike slices such that each slice is isotropic of homogeneous

Therefore space time $=R \times[$, where R represents the time direction $\forall E$ is a homegen - eos q isotropic (maximally symmetric) 1 manifold.

Then the large scale metric:

$$
d s^{2}=-d t^{2}+\alpha^{2}(t) \gamma_{\mu v}(u) d u^{\mu} d u^{v}
$$

* $\left(u_{1}, u_{2}, u_{3}\right)$ are coordinates on $\sum ; \gamma_{\mu \nu}$ is the maximally symmetric metric on \sum.
* As we proceed in time \sum gets biggest hats why we multiply it by the scale factor $\alpha(t)$ that tell how big the space lite slice \sum at the moment t.
* $\gamma_{\mu v}$ fully symmetric \Rightarrow spherically symmetric

$$
\begin{aligned}
& \Rightarrow \gamma_{\mu r(}(u) d u^{r} d u^{r} \\
&= e^{2 \beta(\rho)} d \rho^{2}+\rho^{2} \underbrace{\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)}_{d \Omega^{2}} \\
& \Rightarrow R_{r r}=\frac{2}{\rho} \beta^{\prime} ; \\
& R_{0 \theta}=e^{-2 \beta}\left(\rho \beta^{\prime}-1\right)+1 \\
& R_{\phi \phi}=\left[e^{-2 \beta}\left(\rho \beta^{\prime}-1\right)+1\right] \sin ^{2} \theta .
\end{aligned}
$$

Exercise: Calculate the connection th the Ricci tensor. for $\gamma_{\mu \nu}$

Exercise: Show that for fully symmetric s. apace

$$
\begin{aligned}
& R_{\mu v \rho \alpha}=k\left(g_{\mu \rho} g_{v \alpha}-g_{\mu \alpha} g_{\nu \rho}\right) \\
& \Rightarrow R_{\nu \alpha}=2 k g_{v \alpha}
\end{aligned}
$$

Comparing $R_{\mu \nu}$ with $\leqslant \gamma_{\mu v} \Rightarrow$

$$
\begin{aligned}
& \Rightarrow \beta=-\frac{1}{2} \ln \left(1-k \rho^{2}\right) \\
& \Rightarrow d s^{2}=-d t^{2}+\alpha^{2}(t)\left[\frac{d \rho^{2}}{1-k \rho^{2}}+\rho^{2} d \Omega^{2}\right]
\end{aligned}
$$

This is the Robertson Walker metric

* So far we didn't use Einstein eq. It
will be used t_{0} find $\alpha(t)$
* with $k \rightarrow \frac{k}{|k|} ; \rho \rightarrow \sqrt{|k|} r: \alpha \rightarrow \frac{a}{\sqrt{|k|}}$ sub. . let's check how the metric changes.

$$
\begin{aligned}
& d \rho=\sqrt{|k|} d r \quad \&(d \rho)^{2}=|k| d r^{2} \\
& d s^{2}=-d t^{2}+\frac{a^{2}}{|k|}\left[\frac{|k| d r^{2}}{1-k r^{2}}+\left|r_{0}\right| r^{2} d \Omega^{2}\right] \\
& \Rightarrow d s^{2}=-d t^{2}+a^{2}(t) \underbrace{\left[\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega\right.}] \\
& \Rightarrow k \sigma^{2} \\
& k=-1,0,1
\end{aligned}
$$

Finding the Scale factor:
\& To calculate how $a(t)$ looks like we reed to use Einstein Eq.

* Starting with geometric part:

We need to calculate $R_{a b}$ \& $R, R_{a b}$ is f.n of the connection \Rightarrow Connedions first

* $4 \times \frac{4 \times 5}{2}=40$ independeril components.

$$
\begin{aligned}
& \Gamma_{11}^{0}=\frac{a \dot{a}}{1-k r^{2}} \Gamma_{22}^{0}=d \dot{a} r^{2} \quad \Gamma_{33}^{0}=a \dot{a} r^{2} \sin ^{2} \theta \\
& \Gamma_{01}^{1}=\Gamma_{10}^{1}=\Gamma_{02}^{2}=\Gamma_{20}^{2}=\Gamma_{30}^{3}=\Gamma_{-3}^{3}=\frac{\dot{a}}{a} \\
& \Gamma_{22}^{1}=-r\left(1-k r^{2}\right) \quad \Gamma_{33}^{1}=-r\left(1-k r^{2}\right) \sin ^{2} \theta \\
& \Gamma_{12}^{2}=\Gamma_{21}^{2}=\Gamma_{13}^{3}=\Gamma_{31}^{3}=\frac{1}{r} \\
& \Gamma_{33}^{2}=-\sin \theta \cos \theta \quad \Gamma_{23}^{3}=\Gamma_{32}^{3}=\cot \theta
\end{aligned}
$$

The ron zero component of the Ricci tensor

$$
\begin{array}{ll}
R_{00}=-3 \ddot{a} & R_{22}=r^{\prime}\left(a \ddot{a}+2 \dot{a}^{2}+2 k\right) \\
R_{11}=\frac{a \ddot{a}+2 \dot{a}^{2}+2 k}{1-k a^{2}} & R_{33}=r^{2}\left(a \ddot{a}+2 \dot{a}^{2}+2 k\right) \sin ^{2} \theta
\end{array}
$$

* The Ricei scalar is

$$
\begin{aligned}
R & =R_{\mu}^{r}=R_{0}^{0}+R_{1}^{1}+R_{2}^{2}+R_{3}^{3} \\
& =g^{00} R_{00}+g^{\prime \prime} R_{11}+g^{22} R_{22}+g^{33} R_{33} \\
R & =\frac{6}{a^{2}}\left(a \ddot{a}+\dot{a}^{2}+k\right)
\end{aligned}
$$

Exercise: Show that Einstem Eq. can be also written as: $R_{\mu v}=8 \pi G\left(T_{\mu \nu}-\frac{1}{2} g_{\mu v} T-\Lambda g_{\mu v}\right)$

* The energy . momentum tensor in rest from

$$
\begin{aligned}
& T_{a b}=\left(\begin{array}{cccc}
\rho & 0 & 0 & 0 \\
0 & p & g_{\mu 0} \\
0 & &
\end{array}\right) \\
& \Rightarrow T^{a} b=\operatorname{diag}(-p, p, p, p) \\
& \Longrightarrow T=T_{\mu}^{\mu}=\text { trace } T_{n}{ }^{\prime \prime}=-\rho+3 p
\end{aligned}
$$

*Plugging in to Einstieris eq.

$$
R_{a b}=8 \pi G\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)
$$

00 comp. $-3 \frac{\ddot{a}}{a}=4 \pi G(\rho+3 p)$
$a b=\mu v \quad R_{11}=8 \pi G\left(T_{11}-\frac{1}{2} g_{11} T\right)$ gives

$$
\left(\frac{\ddot{a}}{a}+2\left(\frac{\dot{a}}{a}\right)^{2}+\frac{2 k}{a^{2}}=4 \pi G(\rho-p)\right.
$$

- The 22,33 components give the same eq. due to isotropy.
* Sub. the 00-comp. in the 11 comp., we gel rid of \ddot{a}, we get

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho-\frac{k}{a^{2}}
$$

together with the 00.comp

$$
\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}(\rho+3 p)
$$

they form the "Fiedmann eqs."

NIt" educational" to calculate the 0.comp. of the consavation of energy

$$
\begin{aligned}
\nabla_{\mu} T_{0}^{\mu} & =\partial_{\mu} T_{0}^{\mu}+\Gamma_{\mu 8}^{\mu} T_{0}^{\delta}-\Gamma_{\mu 0}^{1} T^{\mu} \\
& =\partial_{0} T_{0}^{0}+\Gamma_{\mu_{0}}^{\mu} T_{0}^{0}-\Gamma_{00}^{0} T_{0}^{0} \\
& -\Gamma_{10}^{1} T_{1}^{\prime}-\Gamma_{20}^{2} T_{2}^{2}-\Gamma_{30}^{3} T_{3} \\
& =0
\end{aligned}
$$

$$
\Rightarrow \partial_{0} \rho-3 \frac{\dot{a}}{a}(\rho+p)=0
$$

* for more progress, we make use of eq. of state (a relation btw $\rho \otimes p$). Essentially all prefect flied relwant to cosmology obey the simple eq.

$$
P=\omega \rho
$$

where ω is a const ind. of time, thai depend on th flied type.

Plugging in the energy conservation eq.

$$
\Rightarrow \quad \frac{\dot{\rho}}{\rho}=-3(1+\omega) \frac{\dot{a}}{a}
$$

For $k=0 \Rightarrow d \sigma^{2}=d r^{2}+r^{2} d \Omega^{2}=d x^{2}+d y^{2}+d z^{2}$
$\Rightarrow \sum$ is Heat

$$
\begin{aligned}
& 4 \text { For } k=+1 \Rightarrow d \sigma^{2}=\frac{d r^{2}}{1-r^{2}}+r^{2}\left(d o^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
& \text { let } r=\sin x \Rightarrow d r=\cos x d x \\
& \Rightarrow d r^{2}=\cos ^{2} x d x^{2}=\left(1-\sin ^{2} x\right) d x=\frac{d r^{2}}{1-\sin ^{2} x} \\
& \Rightarrow d x^{2}=\frac{d r^{2}}{1-r^{2}} \\
& \Rightarrow d \sigma^{2}=d x^{2}+\sin ^{2} x d^{2} \Omega \\
& \Rightarrow \text { is closed S }
\end{aligned}
$$

$4 K=-1 \Rightarrow d \sigma^{2}=\frac{d r^{2}}{1+r^{2}}+r^{2} d \Omega^{2}$
let $r=\sinh \psi \Rightarrow d r=\cosh \psi d \psi$

$$
\begin{aligned}
\Rightarrow(d r)^{2} & =\cosh ^{2} \psi d \psi^{2} \Rightarrow d \psi^{2}=\frac{d r^{2}}{1+\sinh } \\
\Rightarrow d \psi^{2} & =\frac{d r^{2}}{1+r^{2}} \\
& \Rightarrow d \sigma^{2}=d \psi^{2}+\sinh ^{2} \psi d \Omega^{2}
\end{aligned}
$$

\Rightarrow E is open

Finally

$$
d s^{2}=-d t^{2}+a^{2}(t) \sum
$$

form
depends on $K 甘 \omega$
solution $=$
$3 \times$ \# of different fhiids
form depends on K

3-solution.
"In the light of present knowledge, these achier-- ements seem to be almost obvious, q every int elligent student grass them ω / T much trouble. Yet the year of anxious searching in the dark, with their intense longing their alternations of confidence and exhaustion and the final emergence into the light. only those who experienced this can understand "t". Einstein

