Basic Assumptions for Stellar Evolution Models

From the complex to the "simple" picture : spherical symmetry applied

Initial mass
and
chemical composition

Stellar structure and evolution equations

space coordinate

time coordinate

 $\frac{\partial}{\partial m} = \frac{\partial r}{\partial m} \frac{\partial}{\partial r} \qquad \qquad \frac{\partial}{\partial t} \bigg|_m = \left. \frac{\partial}{\partial t} \right|_r + \underbrace{\frac{\partial r}{\partial t}}_{v(r)} \frac{\partial}{\partial r} = \frac{D}{Dt}$

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$

$$\frac{\partial P}{\partial m} = -\frac{1}{4\pi r^2} \left(\frac{Dv}{Dt} + \frac{\partial \Phi}{\partial m} \right) = -\frac{1}{4\pi r^2} \left(\frac{Dv}{Dt} + \frac{Gm}{r^2} \right)$$
$$\frac{\partial L}{\partial m} = \epsilon_n - \epsilon_\nu - C_p \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t} = \epsilon_n - \epsilon_\nu + \epsilon_g$$

$$\frac{\partial I}{\partial m} = -\frac{GmI}{4\pi r^4 P} \left. \frac{d \ln I}{d \ln P} \right|_{medium} = -\frac{GmI}{4\pi r^4 P} \nabla$$

$$\frac{\partial X_i}{\partial t} \neq \frac{m_i}{\rho} \left(\sum_j r_{ji} - \sum_k r_{ik} \right) \quad \forall i$$
EVOLUTION

Associated boundary conditions

$$m = 0 \quad r(m = 0, t) = 0 \quad L(m = 0, t) = 0$$

@
$$m = M_*$$
 $T(m = M_*, t) = T_{phot}$ $\rho(m = M_*, t) = \rho_{phot}$

if the surface is in radiative equilibrium

$$m = M_*$$
 $T(m = M_*, t) \approx 0$ $\rho(m = M_*, t) \approx 0$

Ana PALACIOS

Characteristic timescales of stellar evolution

t_{dyn} << t_{therm} << t_{nuc}

- → rates of nuclear processes determine stellar evolution
- \rightarrow can decouple equation for chemical composition from the others
- 1. Solve stellar structure equations for given composition
- 2. Apply time step and determine new composition

Solving stellar structure equations

- Four differential equations with boundary conditions at
 - * center of star (m = 0): r = 0, L = 0
 - * surface of star (m = M): fit interior solution to a stellar atmosphere model
- Three "material functions" (for ρ , κ , q)
- Input parameters:

mass M, chemical composition X(t), Y(t), Z(t)

- Output: r(m), P(m), L(m),T(m), ρ (m), κ (m), q(m), for each time t, in particular Teff, L, R, ρ_c , P_c
- Equations are highly non-linear and coupled → have to be solved with numerical methods

Pre-stellar evolution

Catelan et al. 2007

Infrared/Submillimeter Young Stellar Object Classification

(Lada 1987 + André, Ward-Thompson, Barsony 1993)

Early evolution

Pre-main sequence evolution

Pre-main sequence evolution

Stars contract and for the low-mass ones, they do it along the *Hayashi track* → Kelvin-Helmoltz timescale D burning

P and density increase in core \rightarrow increased T in core \rightarrow increased ionisation \rightarrow decreased opacity \rightarrow radiative core appears Li burning

→ now move to Henyey track

→ increased core temperature : partial CNO burning → small convective core in solar-type stars until 12C exhaustion

→ ppl chains take over Zero Age Main Sequence (ZAMS)

Main sequence evolution

Hydrogen burning

Core hydrogen burning occurs in main sequence stars via different reaction chains depending on the core temperature

Ana PALACIOS

Temperature (K)

Main sequence evolution of a 1Msun star

Main Sequence

high-mass star

Fig. 22.7. The mass values m from centre to surface are plotted against the stellar mass M for the same zero-age main-sequence models as in Fig. 22.1. "Cloudy" areas indicate the extension of convective zones inside the models. Two solid lines give the m values at which r is 1/4 and 1/2 of the total radius R. The dashed lines show the mass elements inside which 50% and 90% of the total luminosity L are produced

Kippenhahn & Weigert, Stellar Structure and Evolution, Spri

Main Sequence

Main sequence stars are supposed reflect the chemical composition of the ISM they were born out of.

Light elements (Li, Be, B) can be partially destroyed during the PMS and appear depleted on the main sequence

No abundance variation of heavy elements is expected at the stellar surface during this phase compared with the initial content

Post Main Sequence evolution

Evolution (beyond the MS) is mainly dictated by the evolution of T and density in the core, which determine the nuclear energy production.

The path in the HR diagram will also be influenced by modifications of the opacity in the external layers.

Stars of different masses will have different evolutions.

lben, 1991, ApJSS 76, 55

Post Main Sequence evolution

Succession of phases of
hydrostatic equilibrium and nonequilibrium phases
(contraction/expansion) during
which the star temperature
decreases (for low and
intermediate mass stars).

lben, 1991, ApJSS 76, 55

Post-Main sequence evolution of low-mass stars

Increase of potential gravitational energy in the stellar centre at central H exhaustion → core contraction

Temperature continuity \rightarrow T increases in regions surrounding the core \rightarrow HBS T increases in central regions \rightarrow expansion of envelope to maintain the temperature gradient \rightarrow the star moves to the right in the HR diagram Cooling associated with radius increase \rightarrow increased opacity in external layers → deepening of the convective

envelope → first dredge-up

First dredge-up

First dredge-up

Deepening of the convective envelope in mass reaching regions that have been processed through nuclear reactions \rightarrow

Stellar surface abundances modification

Post-Main sequence evolution of low-mass stars

RGB stars alve a partially degenerated core \rightarrow evolves independantly of temperature variations. Core mass increases in core regions as the stars ascends the RGB When the core mass reaches 0.45 M_o, and Tc and $\rho_{,}$, get large enough \rightarrow He fusion reactions ignite in degenerate medium Helium flash

He flash

He burning / red clump

 3α reactions dominate the energy production in He rich regions with T_c > 10^8 K and $\rho_c > 10^5$ g/cm³ The Triple Alpha Process

© Copyright CSIRO Australia 2004.

These reactions will start in partially degenerated plasma in low-mass stars Helium Flash

He fusion products

Carbon ¹²C Oxygen ¹⁶ O, ¹⁸ O Neon ²⁰Ne, ²²Ne neutrons via

Carbon ¹²C ${}^{4}\text{He}(\alpha,\gamma)^{8}\text{Be}(\alpha,\gamma)^{12}\text{C}$ Oxygen ¹⁶ O, ¹⁸ O ${}^{12}\text{C}(\alpha,\gamma)^{16}\text{O}(\alpha,\gamma)^{20}\text{Ne}$

 $^{13}C(\alpha,n)^{16}O$ et $^{22}Ne(\alpha,n)^{25}Mg$

He burning / red clump - 5 Msun star

Impact of metallicity on evolution

Models between 1.5 M_{\odot} and 3 M_{\odot}

Intermediate mass stars evolution and 2nd DUP

Core He fusion in non-degenerate plasma \rightarrow second dredge-up occuring at the end of the core He burning \rightarrow similar to 1st DUP.

FIG. 2.—The track in the H-R diagram of a theoretical model star of mass $5 M_{\odot}$ and of Population I composition. Text beside various portions of the track escribe an important physical process occurring within the star at the indicated position. From Iben (1967c).

Intermediate mass stars evolution and 2nd DUP

Ļ

8 8

Intermediate mass stars evolution and 2nd DUP

AGB phase

Stars with masses <= 10 Msun ascend the red giant branch for the second time after core He burning \rightarrow AGB stars

Very luminous → undergo important mass loss and peculiar nucleosynthesis due to double shell nuclear fusion

Essential contributors to the chemical evolution of interstellar medium

TP-AGB phase

HBS et HeBS advance at different paces : intershell mass ↗, T(HeBS) ↗ → thermal pulse

The pulse swallows the products of H nuclear fusion **peculiar nucleosynthesis**

Pulse acts like a piston

- lifts up the envelope
- shuts down the HBS
- possibly further deepening
 of falling back envelope into
 regions processed in the
 pulse

3rd DUP events

TP-AGB nucleosynthesis

This is a way to increase C/O stellar atmospheres and to produce heavy neutron-rich elements

Post-AGB evolution and PNae

R I V U X G Copyright © 2005 Pear:

Copyright © 2005 Pearson Prentice Hall, Inc.

Thermal pulses + global radial pulsations (Mira type)

- \rightarrow ejection of envelope
- → potentially a PNae

This is far from being clear yet!
Surface abundances evolution for massive stars

A wealth of "abundance anomalies"

Anomalous Fe and Fe peak Anomalous Li, C, N Elements Low Li Anomalous O, Na, Mg, Al

A wealth of "abundance anomalies"

Carbon deficiency in evolved red giants of globular clusters

Strong departures from the solar values for the surface abundances of heavy elements in B, A and F type stars

Direct evidence of dynamical processes in stars

magnetic fields

rotation

Low-mass dwarfs

Gallet & Bouvier 2013

Mass loss driven evolution ???

Probe stellar structure equations in detail

Helioseismology probes the outer 80% of the solar radius via p-modes.

g-modes propagate in the solar core and are not detected in the surface oscillation spectrum.

→ It is extremely difficult to probe the core of the Sun, since only g-mode candidates are found

The solar-like oscillations discovered in red giant stars correspond to p-modes and so-called mixed-modes. g-modes and p-modes propagate in common cavities → they make it possible to probe the core of red giants

High precision space photometry

High-precision photometry from space + radial velocity follow-up → detection of exoplanetary transits

Fourier analysis of the lightcurves

- → power-spectrum
- → asteroseismology
- \rightarrow probe the internal structure + measure basic properties of stars

Some results from CoRoT & Kepler

Very successful CoRoT and Kepler missions dedicated to exoplanets detections and asteroseismology

Kepler planet candidate statistics

New era for stellar physics

internal rotation of red giants

Large diversity of planetary systems

CoRoT confirmed exoplanets

Goal of the PLATO 2.0 mission

Main goal of PLATO :

detect terrestrial exoplanets in the habitable zone of solar-type stars and characterise their bulk properties

PLATO will be leading this effort by combining:

planet detection and radius determination from photometric transits,

determination of planet masses from ground-based radial velocity follow-up,

determination of accurate stellar masses, radii, and ages from asteroseismology,

identification of bright targets for atmospheric spectroscopy.

PLATO 2.0: Exoplanets and Stars

KG Μ

Characterization of exoplanets ... needs characterization of stars

- Mass + radius → mean density (gaseous vs. rocky, composition, structure)
- Orbital distance, atmosphere (habitability)
- Age

(planet and planetary system evolution)

- Stellar mass, radius •
 - (derive planet mass, radius)
- Stellar type, luminosity, activity • (planet insolation)
- Stellar age (defines planet age)

Oscillation spectra computed from stellar models guide the identification of modes.

The separations between modes allow to retrieve M and R provided that T_{eff} is well known

- → need to combine high precision photometry and spectroscopy
- → need a grid of precise stellar models to interpret oscillation spectra

$$\frac{\Delta\nu}{\Delta\nu_{\odot}} = \left(\frac{M}{M_{\odot}}\right)^{0.5} \left(\frac{R}{R_{\odot}}\right)^{-1.5}$$

$$\frac{\nu_{max}}{\nu_{max,\odot}} = \left(\frac{M}{M_{\odot}}\right) \left(\frac{R}{R_{\odot}}\right)^{-2} \left(\frac{T_{eff}}{T_{eff,\odot}}\right)^{-0.5}$$

$$\delta\nu \propto \frac{dc_s}{dr} \rightarrow \text{ age dependent}$$
PLATO shall give
M within 2%
age within 10 %

Chaplin & Miglio, 2013