Dark Matter - Problem set

Petnica Summer Institute - 2018

Problem I

One of the first evidences for the existence of Dark Matter came from the rotation curves of spiral galaxies. What kind of circular velocity profile, $V_{\rm cir}(R)$, do you expect to for the following matter density distributions:

- 1. Sphere of constant density: $\rho(r) = \rho_0 \cdot \theta(R_{\text{max}} r)$
- 2. Axisymmetric razor-thin disk: $\rho(R) = \Sigma_0 \cdot e^{R/R_h}$

What kind of spherically symmetric density distribution would lead to constant circular velocity profile $V_{\text{cir}}(R) = V_0$?

Problem II

Warm Dark Matter can not form structure below the free steaming length which is defined as follows:

$$\lambda_{\rm FS} = \int_0^{t_{\rm EQ}} \frac{v(t)}{a(t)} dt \tag{1}$$

After the particles become non-relativistic their velocity redshifts as $v(t) = \frac{c \cdot a(t_{\rm NR})}{a(t)}$. Compute the free steaming length of Dark Matter that decouples at $a_{\rm NR}(t) = \frac{3k_{\rm B}T_0}{mc^2}$ for m = 1 eV and m = 1 MeV. The scale factor at radiation-matter equality is approximately $a(t_{\rm EQ}) \approx \frac{1}{3500}$.

Problem III

Pauli exclusion principle prevents fermions to collapse in an arbitrarily dense configuration. Assuming that the Dark Matter is in the form of degenerate Fermi gas

$$f(p) = \begin{cases} 1 \ ; \ p \le p_F \\ 0 \ ; \ p > p_F \end{cases} ,$$
 (2)

estimate the minimum particle mass that is still compatible with halo of mass M and radius R. You can approximate the density of degenerate Fermi gas throughout the halo is constant.

Problem IV

Weakly Interacting Massive Particles (WIMPs) generically yield the correct abundance of Dark Matter for a typically velocity averaged weak cross section $\langle \sigma v \rangle \sim G_{\rm F}^2 m^2$. By using the expression for number density and energy density of particles in thermal equilibrium:

$$n_{\rm eq} = \int_0^\infty \mathrm{d}^3 p \; f(p) \tag{3}$$

$$\rho_{\rm eq} = \int_0^\infty \mathrm{d}^3 p \; E(p) \; f(p) \tag{4}$$

compute the freeze-out temperature of WIMPs, which were initially in equilibrium with the plasma and decoupled during the radiation dominated era. What is their energy density today?¹

¹Hint: WIMPs decouple in the radiation dominated era. Their annihilation rate is given by $\Gamma = \langle \sigma v \rangle n_x$. After the decoupling their number density scales as $n_x \propto T^{-1}$.