Galaxy formation and evolution: Physical models & Theoretical challenges 1°

Katarina Kraljic

Institute for Astronomy, Edinburgh

July 2019, Petnica

Useful reading

iv:1412.2712v1 [astro-ph.GA] 8 Dec 20

Physical Models of Galaxy Formation in a Cosmologica Framework

RACHER, S. SCHERWILLE Department of Physics and Astronomy, Ratgers University superville/Ochroits, ratasex, edu

Bostess Dorf: Department of Physics, University of the Husters Cape, Cape Town South Aldrean Antersouting Observatories, Cape Town Advisor Datikate for Mathematical Sciences, Cape Town researchingmaticson

Key Wore

phay femation, galaxy evolution, numerical simulations, cosmology

Abstract

The short human is a similar of the short human is a similar o

Somerville & Davé 2014

heoretical Challenges in Gal. ormation

Transterm Natal⁴ & Janzana P. Orzanszn²⁴ ¹ Mar Hieldschutzen in Antrophysics, Natl Schwanschlöffer, 1, 6578 Garchig, Germany: renell handbergegeneting enged ² Bystennet of Antomosy, Chinaka Galowsky, MN W, 1208 Steet, Nev Fark, NY1007, UKU emill Jondenszonlahla ellu ² Bystennet of Antophysical Science, Distored Ukirette, Prisores, JJ 0865, USA

Key Words

theoretical models, cosmology, galaxy formation, galaxy evolution

Abstract

Another the sector is the sect

Naab & Ostriker 2016

Night sky

©Mark Uhru 2009

Night sky

3/25

©Mark Uhru 2009

Te Hilipool Galaxy • W. Parsons 1845

Night sky

3/25

©Mark Uhru 2009

Night sky

Te Hilipool Galaxy • W. Parsons 1845

Night sky

HDF CHST 1995

Uhru 2009

©Mark I

$H_{\rm ubble} U_{\rm ltra} D_{\rm eep} F_{\rm ield}$

4/25

ollisions

Hubble sequence

🔘 NASA, ESA, M. Kornmesser

Distant Universe

Understanding galaxy formation

(1) initial conditions

Understanding galaxy formation

 $\Lambda \mathsf{CDM}$

- CDM paradigm: success on large scales
- simplest (6 parameters only)
- sufficiently accurate

Understanding galaxy formation

$\Lambda \mathsf{CDM}$

- CDM paradigm: success on large scales
- simplest (6 parameters only)
- sufficiently accurate

Introduction Understanding galaxy formation ΛCDM • CDM paradigm: success on large scales 1 initial conditions • simplest (6 parameters only) · sufficiently accurate \oplus (A) DM only (B) all components 2 ingredients use Methods numerical simulations 3 computational tools SAM Predictions

• HOD ...

compare

observations

(4)

Introduction Unders

Introduction Understand

Introduction Under

Initial conditions

Years after the Big Bang

Initial conditions

Years after the Big Bang

- cosmological principle
- Einstein's theory of GR

Initial conditions

Years after the Big Bang

Initial conditions

Years after the Big Bang

- cosmological principle
- Einstein's theory of GR
- quantum fluctuations

Years after the Big Bang

- cosmological principle
- Einstein's theory of GR
- quantum fluctuations

Initial conditions

Years after the Big Bang

- cosmological principle
- Einstein's theory of GR
- quantum fluctuations
- standard model (Λ CDM)

Initial conditions

Years after the Big Bang

from Spergel 2015

Initial conditions

Years after the Big Bang

- cosmological principle
- Einstein's theory of GR
- quantum fluctuations
- standard model (ΛCDM)
- density peaks & valleys
- expansion
- $\rho > \rho_{\rm crit}$

Initial conditions

Years after the Big Bang

Initial conditions

Years after the Big Bang

Physical processes

9/25

Overview

1 Gravity

(2) Hydrodynamics & Thermal evolution

Overview

Gravity (1)

(2) Hydrodynamics & Thermal evolution

(3) Star formation

9/25

Gravity

3 Star formation

(4) Black hole formation & growth

Overview

Gravity

(2) Hydrodynamics & Thermal evolution

3 Star formation

4 Black hole formation & growth

- (7) Stellar populations & chemical evolution

8 Radiative transfer

Gravity

• "skeleton" for galaxy formation

- "skeleton" for galaxy formation
- standard paradigm: galaxies born within DM halos

(10/25)

- "skeleton" for galaxy formation
- standard paradigm: galaxies born within DM halos
- \bullet hierarchical bottom-up formation \Longrightarrow DM halo mergers

(10/25)

- "skeleton" for galaxy formation
- standard paradigm: galaxies born within DM halos
- \bullet hierarchical bottom-up formation \Longrightarrow DM halo mergers
- gravity & dynamical friction \implies galaxy mergers

(10/25)

- "skeleton" for galaxy formation
- standard paradigm: galaxies born within DM halos
- \bullet hierarchical bottom-up formation \Longrightarrow DM halo mergers
- gravity & dynamical friction \implies galaxy mergers
 - bursts of SF
 - accretion onto BH
 - transformation of galaxy structure & morphology

Hydrodynamics

- \bullet cooling \longrightarrow 2-body radiative processes
 - $T \ge 10^7$ K: full collisional ionisation (bremsstrahlung)
 - $10^4 < T < 10^7~{\rm K}:$ collisional ionisation, excitation (decay to the ground state), recombination
 - $T < 10^4$ K: collisional excitation/de-excitation (metal-line & molecular cooling)

Hydrodynamics

- \bullet cooling \longrightarrow 2-body radiative processes
 - $T \ge 10^7$ K: full collisional ionisation (bremsstrahlung)
 - $10^4 < T < 10^7~{\rm K}:$ collisional ionisation, excitation (decay to the ground state), recombination
 - $T < 10^4$ K: collisional excitation/de-excitation (metal-line & molecular cooling)
- "hot mode" accretion
 - pressure-supported quasi-hydrostatic gaseous halo formation
 - gas cooling in cooling flows

van de Voort et al. 2011

Hydrodynamics

- $\bullet\ {\rm cooling}\ \longrightarrow$ 2-body radiative processes
 - $T \ge 10^7$ K: full collisional ionisation (bremsstrahlung)
 - $10^4 < T < 10^7~{\rm K}:$ collisional ionisation, excitation (decay to the ground state), recombination
 - $T < 10^4$ K: collisional excitation/de-excitation (metal-line & molecular cooling)
- "hot mode" accretion
 - pressure-supported quasi-hydrostatic gaseous halo formation
 - gas cooling in cooling flows
- "cold mode" accretion
 - $t_{\rm cool} << t_{\rm dyn}$
 - no hot gaseous halo
 - cold flows

van de Voort et al. 2011

Physical processes

Star formation

• collapsed gas \implies self-gravitation

Physical processes

12/25

- collapsed gas \implies self-gravitation
- if cooling processes dominate over heating \implies run-away process (\iff more rapid cooling at higher ρ)

Physical processes

12/25

- collapsed gas \implies self-gravitation
- if cooling processes dominate over heating ⇒ run-away process (⇔ more rapid cooling at higher ρ)
- GMC formation \Longrightarrow dense cores \Longrightarrow nuclear fusion

Physical processes

12/25

- collapsed gas \implies self-gravitation
- if cooling processes dominate over heating ⇒ run-away process (⇔ more rapid cooling at higher ρ)
- GMC formation \implies dense cores \implies nuclear fusion
- cosmological hydrodynamic simulations: sub-grid models

Physical processes

12/25

- collapsed gas \implies self-gravitation
- if cooling processes dominate over heating ⇒ run-away process (⇔ more rapid cooling at higher ρ)
- GMC formation \implies dense cores \implies nuclear fusion
- cosmological hydrodynamic simulations: sub-grid models

Physical processes

12/25

Star formation

- collapsed gas \implies self-gravitation
- if cooling processes dominate over heating ⇒ run-away process (⇔ more rapid cooling at higher ρ)
- GMC formation \implies dense cores \implies nuclear fusion
- cosmological hydrodynamic simulations: sub-grid models

BH formation & growth

- formation: $1^{\rm st}$ seed BH \Longrightarrow remnants of PopIII stars
 - direct collapse of very low-AM gas
 - stellar dynamical processes

Physical processes

12/25

Star formation

- collapsed gas \implies self-gravitation
- if cooling processes dominate over heating ⇒ run-away process (⇔ more rapid cooling at higher ρ)
- GMC formation \implies dense cores \implies nuclear fusion
- cosmological hydrodynamic simulations: sub-grid models

BH formation & growth

- formation: $1^{\rm st}$ seed BH \Longrightarrow remnants of PopIII stars
 - direct collapse of very low-AM gas
 - stellar dynamical processes
- growth:
 - accreting negligible-AM gas
 - forming accretion disk

Physical processes

12/25

Star formation

- collapsed gas \implies self-gravitation
- if cooling processes dominate over heating ⇒ run-away process (⇔ more rapid cooling at higher ρ)
- GMC formation \implies dense cores \implies nuclear fusion
- cosmological hydrodynamic simulations: sub-grid models

BH formation & growth

- formation: $1^{\rm st}$ seed BH \Longrightarrow remnants of PopIII stars
 - direct collapse of very low-AM gas
 - stellar dynamical processes
- growth:
 - accreting negligible-AM gas
 - forming accretion disk
- cosmological hydrodynamic simulations: sub-grid models

Physical processes

SF feedback

 $\bullet~$ observation: $\,\leq\,$ 10 % of baryons locked in stars today

Physical processes

(13/25)

- ullet observation: \leq 10 % of baryons locked in stars today
- problem: CDM models \longrightarrow "overcooling"

Physical processes

(13/25)

- \bullet observation: \leq 10 % of baryons locked in stars today
- problem: CDM models \longrightarrow "overcooling"
- early solution: SNe explosions \longrightarrow heat & blow out gas \implies inefficient SF

(13/25)

- \bullet observation: \leq 10 % of baryons locked in stars today
- *problem*: CDM models \longrightarrow "overcooling"
- $\bullet \ early \ solution: SNe \ explosions \longrightarrow heat \ \& \ blow \ out \ gas \implies inefficient \ SF$
- today recognised: SNe & massive stars (winds, photo-heating, photo-ionization) →
 - inefficient SF
 - large-scale winds reducing baryon fraction

(13/25)

- \bullet observation: \leq 10 % of baryons locked in stars today
- problem: CDM models \longrightarrow "overcooling"
- \bullet early solution: SNe explosions \longrightarrow heat & blow out gas \implies inefficient SF
- today recognised: SNe & massive stars (winds, photo-heating, photo-ionization) →
 - inefficient SF
 - large-scale winds reducing baryon fraction
- cosmological hydrodynamic simulations: sub-grid models

Physical processes

AGN feedback

• most spheroid/massive galaxies \longrightarrow SMBH

Physical processes

(14/25

AGN feedback

- most spheroid/massive galaxies \longrightarrow SMBH
- energy released > binding energy
Physical processes

(14/25)

AGN feedback

- most spheroid/massive galaxies \longrightarrow SMBH
- energy released > binding energy
- \bullet uncertain efficiency of energy \longleftrightarrow gas coupling

Physical processes

(14/25)

AGN feedback

- most spheroid/massive galaxies \longrightarrow SMBH
- ullet energy released > binding energy
- uncertain efficiency of energy \longleftrightarrow gas coupling
- signatures of AGN feedback
 - $\bullet \ \ \mathsf{high-v} \ \ \mathsf{winds} \ \longrightarrow \ \ \mathsf{may} \ \ \mathsf{eject} \ \ \mathsf{cold} \ \ \mathsf{gas}$
 - hot bubbles (radio jets related) \longrightarrow may heat gas

Physical processes

(14/25)

AGN feedback

- most spheroid/massive galaxies \longrightarrow SMBH
- energy released > binding energy
- uncertain efficiency of energy \longleftrightarrow gas coupling
- signatures of AGN feedback
 - $\bullet \ \ \mathsf{high-v} \ \ \mathsf{winds} \ \longrightarrow \ \mathsf{may} \ \mathsf{eject} \ \mathsf{cold} \ \mathsf{gas}$
 - hot bubbles (radio jets related) \longrightarrow may heat gas
- cosmological hydrodynamic simulations: sub-grid models

Physical processes

(15/25)

Chemical evolution

• stars & SNe produce & distribute metals \longrightarrow polluting the IGM

Physical processes

(15/25)

Chemical evolution

- ullet stars & SNe produce & distribute metals \longrightarrow polluting the IGM
- chemical evolution \longrightarrow critical
 - cooling rates enhanced in Z-enriched gas
 - L & color of stars \longrightarrow sensitive to Z
 - heavy elements \longrightarrow dust production

(15/25)

Chemical evolution

- ullet stars & SNe produce & distribute metals \longrightarrow polluting the IGM
- chemical evolution \longrightarrow critical
 - cooling rates enhanced in Z-enriched gas
 - L & color of stars \longrightarrow sensitive to Z
 - $\bullet \ \ \text{heavy elements} \ \longrightarrow \ \text{dust production}$
- cosmological hydrodynamic simulations: included

(15/25)

Chemical evolution

- $\bullet\,$ stars & SNe produce & distribute metals \longrightarrow polluting the IGM
- chemical evolution \longrightarrow critical
 - cooling rates enhanced in Z-enriched gas
 - L & color of stars \longrightarrow sensitive to Z
 - heavy elements \longrightarrow dust production
- cosmological hydrodynamic simulations: included

Radiative transfer

- stars & AGN \longrightarrow radiation
 - heat the gas
 - modify cooling rates (by changing the ionisation state of gas)

(15/25)

Chemical evolution

- $\bullet\,$ stars & SNe produce & distribute metals \longrightarrow polluting the IGM
- chemical evolution \longrightarrow critical
 - cooling rates enhanced in Z-enriched gas
 - L & color of stars \longrightarrow sensitive to Z
 - heavy elements \longrightarrow dust production
- cosmological hydrodynamic simulations: included

Radiative transfer

- stars & AGN \longrightarrow radiation
 - heat the gas
 - modify cooling rates (by changing the ionisation state of gas)
- transmission & scattering on dust \longrightarrow impact on
 - *L*
 - color
 - determined morphology

(15/25)

Chemical evolution

- stars & SNe produce & distribute metals \longrightarrow polluting the IGM
- chemical evolution \longrightarrow critical
 - cooling rates enhanced in Z-enriched gas
 - L & color of stars \longrightarrow sensitive to Z
 - heavy elements \longrightarrow dust production
- cosmological hydrodynamic simulations: included

Radiative transfer

- stars & AGN \longrightarrow radiation
 - heat the gas
 - modify cooling rates (by changing the ionisation state of gas)
- $\bullet\,$ transmission & scattering on dust $\longrightarrow\,$ impact on
 - *L*
 - color
 - determined morphology
- post-processing

${\sf Methods}$

1 "models"

- Halo occupation distribution (HOD) models Conditional luminosity function (CLF) models Sub-halo abundance matching (SHAM) models
- no modeling of physical processes
- $\bullet \ \ \mathsf{mapping} \ \ \mathsf{galaxies} \ \longleftrightarrow \ \ \mathsf{halos}$

Methods

(2) numerical hydrodynamic techniques

- most explicit way
- solve eqs of gravity, hydrodynamics, thermodynamics for DM, gas and stars
- advantages: predictions for ρ , T, \vec{v} , ...
- drawbacks: high computational cost & arbitrary recipes

Methods

- 1 "models"
- 2 numerical hydrodynamic techniques
- **3** semi-analytic modeling (SAM)
 - set of simplified flow eqs for bulk components \rightarrow tracks
 - how much gas accretes onto halo
 - how much hot gas cools & SF
 - removal of cold gas by feedback processes
 - advantages: reduced computational cost

Galaxy components

Galaxy components

Galaxy components

Galaxy components

Galaxy components

Galaxy formation in a nutshell

(18/25

cosmological initial and boundary conditions

Galaxy formation in a nutshell

cosmological initial and boundary conditions gravitational instability

Observations: global properties

19/25

Lapi et al. 2017

Observations: global properties

19/25

Lapi et al. 2017

Observations: global properties

Baldry et al. 2004 Schiminovich et al. 2007

Observations: global properties

Baldry et al. 2004 Schiminovich et al. 2007

Schiminovich et al. 2007

Observations: global properties

Observations: global properties

Baldry et al. 2004 Schiminovich et al. 2007

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007

- "red sequence"
 - quiescent galaxies
 - old stellar populations
- " blue cloud"
 - SF galaxies
 - young stellar populations

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007

- "red sequence"
 - quiescent galaxies
 - old stellar populations
- "blue cloud"
 - SF galaxies
 - young stellar populations

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007

- "red sequence"
 - quiescent galaxies
 - old stellar populations
- "blue cloud"
 - SF galaxies
 - young stellar populations

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007

- "red sequence"
 - quiescent galaxies
 - old stellar populations
- "blue cloud"
 - SF galaxies
 - young stellar populations

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007

- "red sequence"
 - quiescent galaxies
 - old stellar populations
- "blue cloud"
 - SF galaxies
 - young stellar populations

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007

- "red sequence"
 - quiescent galaxies
 - old stellar populations
- "blue cloud"
 - SF galaxies
 - young stellar populations

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007

- "red sequence"
 - quiescent galaxies
 - old stellar populations
- "blue cloud"
 - SF galaxies
 - young stellar populations

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007

- "red sequence"
 - quiescent galaxies
 - old stellar populations
- "blue cloud"
 - SF galaxies
 - young stellar populations

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007

- "red sequence"
 - quiescent galaxies
 - old stellar populations
- "blue cloud"
 - SF galaxies
 - young stellar populations

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007

- "red sequence"
 - quiescent galaxies
 - old stellar populations
- "blue cloud"
 - SF galaxies
 - young stellar populations

Schiminovich et al. 2007

Brammer et al. 2011, Muzzin et al. 2013

Observations: global properties

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007 Brammer et al. 2011, Muzzin et al. 2013 Kauffmann et al. 2003 Blanton & Moustakas 2009

Bimodality

- "red sequence"
 - quiescent galaxies
 - old stellar populations
 - comoving $\rho \nearrow$ with t since $z \sim 2$

"blue cloud"

- SF galaxies
- young stellar populations
- comoving $\rho \searrow$ or const. with t since $z \sim 2 \implies$ "quenching"
- up to $z\sim$ 2 (perhaps $z\sim$ 3-4)

Observations: global properties

e.g. Strateva et al. 2001 Baldry et al. 2004 Schiminovich et al. 2007 Brammer et al. 2011, Muzzin et al. 2013 Kauffmann et al. 2003 Blanton & Moustakas 2009

- "red sequence"
 - quiescent galaxies
 - old stellar populations
 - comoving $\rho \nearrow$ with t since $z \sim 2$
 - spheroid-dominated
- "blue cloud"
 - SF galaxies
 - young stellar populations
 - comoving $\rho \searrow$ or const. with t since $z \sim 2 \implies$ "quenching"
 - disk-dominated
- up to $z\sim$ 2 (perhaps $z\sim$ 3-4)

Observations: scaling relations

also e.g. Noeske et al. 2007, Speagle et al. 2014

Observations: scaling relations

- 3 cold gas fractions
 - $f_{gas} = \frac{M_{gas}}{M_{\star}}$
 - $f_{\rm gas} \propto M_{\star}^{-0.57}$

(Peeples & Shankar 2011)

- significant rise from z=0 to $z\sim 2$
- plateau or possibly a slight decline at $z\geq 2$

(e.g. Geach et al. 2011, Saintonge et al. 2013, Tacconi et al. 2013, Genzel et al. 2014, Scoville et al. 2014)

3 cold gas fractions

- $f_{gas} = \frac{M_{gas}}{M_{\star}}$
- $f_{\rm gas} \propto M_{\star}^{-0.57}$

(Peeples & Shankar 2011)

• significant rise from z = 0 to $z \sim 2$

plateau or possibly a slight decline at z ≥ 2
(e.g. Geach et al. 2011, Saintonge et al. 2013, Tacconi et al. 2013, Genzel et al. 2014, Scoville et al. 2014)

4 scatter dependence

- Mass-metallicity-SFR: at fixed M_★ lower Z higher SFR (Lara-López et al. 2010, Mannucci et al. 2010)
- Mass-metallicity- f_{gas} : at fixed M_{\star} lower Z higher f_{gas} (Bothwell et al. 2013, Lara-López et al. 2013)

Observations: structural scalings

 $L[M_{\star}]$ – internal velocity

Observations: structural scalings

$$L[M_{\star}] - size$$

