Galaxy formation and evolution Physical models & Theoretical challenges 2°

Katarina Kraljic

Institute for Astronomy, Edinburgh

July 2019, Petnica

Coupling of scales

Coupling of scales

Coupling of scales

Coupling of scales

Coupling of scales

Coupling of scales

Coupling of scales

Coupling of scales

Coupling of scales

Star formation

Star formation

Star formation

Star formation

3/30

Star formation evidence • • in cold, dense, molecular gas phase • inefficient SF \iff \sim 1% of gas converted into stars per free-fall time • ISM \longrightarrow H₂-dominated at \sim 1-100 H/cc

Star formation

3/30

Star formation evidence 0 • in cold, dense, molecular gas phase • inefficient SF \iff \sim 1% of gas converted into stars per free-fall time • ISM \longrightarrow H₂-dominated at \sim 1-100 H/cc solution (?) 0 density threshold for star formation • model/estimate H₂ formation

Star formation

3/30

Star formation evidence 0 • in cold, dense, molecular gas phase • inefficient SF \iff \sim 1% of gas converted into stars per free-fall time • ISM \longrightarrow H₂-dominated at \sim 1-100 H/cc solution (?) 0 density threshold for star formation • model/estimate H₂ formation 0 problems high resolution needed • difficult to model H₂ formation

Star formation

Star formation

4/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{
ho}_{\star} = \epsilon rac{
ho_{ ext{gas}}}{t_{ ext{ff}}}$$
, for $ho >
ho_0$

 $\rho_{\rm gas}$ - gas density $t_{\rm ff}$ - free-fall time ϵ - local SF efficiency ρ_0 - density threshold

Star formation

4/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{\rho}_{\star} = \epsilon \frac{\rho_{\rm gas}}{t_{\rm ff}} \text{, for } \rho > \rho_0$$

 $\begin{array}{c} \rho_{\rm gas} \ - \ {\rm gas} \ density \\ t_{\rm ff} \ - \ {\rm free-fall} \ {\rm time} \\ \epsilon \ - \ {\rm local} \ {\rm SF} \ {\rm efficiency} \\ \rho_0 \ - \ {\rm density} \ {\rm threshold} \end{array} \right\} \ {\rm free} \ {\rm parameters}$

Star formation

4/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{
ho}_{\star} = \epsilon rac{
ho_{
m gas}}{t_{
m ff}}$$
, for $ho >
ho_0$

 $\begin{array}{l} \rho_{\rm gas} \ \text{- gas density} \\ t_{\rm ff} \ \text{- free-fall time} \\ \epsilon \ \text{- local SF efficiency} \\ \rho_0 \ \text{- density threshold} \end{array} \right\} \ \text{free parameters}$

calibration

Star formation

4/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{\rho}_{\star} = \epsilon \frac{\rho_{\rm gas}}{t_{\rm ff}} \text{, for } \rho > \rho_0$$

 $\begin{array}{l} \rho_{\rm gas} & - \mbox{ gas density} \\ t_{\rm ff} & - \mbox{ free-fall time} \\ \epsilon & - \mbox{ local SF efficiency} \\ \rho_0 & - \mbox{ density threshold} \end{array} \right\} \ \ \mbox{ free parameters}$

- calibration
 - $-\epsilon \sim 1\% \iff$ Kennicutt-Schmidt relation $\epsilon \sim 1\% \iff$ (Schmidt 1959, Kennicutt 1998)

– $ho_0 \sim$ 0.1 H/cc in cosmo sims

- problems
 - Kennicutt-Schmidt relation \sim 0.5–1 kp
 - ho_0 resolution dependent
- solution?
 - (more) realistic ISM
 - understand better SF

Star formation

6/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{
ho}_{\star} = \epsilon rac{
ho_{
m gas}}{t_{
m ff}}$$
, for $ho >
ho_0$

 $\begin{array}{c} \rho_{\rm gas} \ - \ {\rm gas} \ \ {\rm density} \\ t_{\rm ff} \ - \ {\rm free-fall} \ {\rm time} \\ \epsilon \ - \ {\rm local} \ {\rm SF} \ {\rm efficiency} \\ \rho_0 \ - \ {\rm density} \ {\rm threshold} \end{array} \right\} \ \ {\rm free} \ {\rm parameters}$

- calibration
 - $-\epsilon \sim 1\% \iff$ Kennicutt-Schmidt relation (Schmidt 1959, Kennicutt 1998)

Star formation

6/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{\rho}_{\star} = \epsilon \frac{\rho_{\rm gas}}{t_{\rm ff}} \text{, for } \rho > \rho_0$$

 $\begin{array}{l} \rho_{\rm gas} \ - \ {\rm gas} \ {\rm density} \\ t_{\rm ff} \ - \ {\rm free-fall} \ {\rm time} \\ \epsilon \ - \ {\rm local} \ {\rm SF} \ {\rm efficiency} \\ \rho_0 \ - \ {\rm density} \ {\rm threshold} \end{array} \right\} \ {\rm free \ parameters}$

calibration

- $-\epsilon \sim 1\% \iff$ Kennicutt-Schmidt relation (Schmidt 1959, Kennicutt 1998)
- $-\rho_0 \sim 0.1$ H/cc in cosmo sims

Star formation

6/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{\rho}_{\star} = \epsilon \frac{\rho_{\rm gas}}{t_{\rm ff}} \text{, for } \rho > \rho_0$$

 $\begin{array}{c} \rho_{\rm gas} & - \mbox{ gas density} \\ t_{\rm ff} & - \mbox{ free-fall time} \\ \epsilon & - \mbox{ local SF efficiency} \\ \rho_0 & - \mbox{ density threshold} \end{array} \right\} \ \ \mbox{ free parameters}$

calibration

- $\epsilon \sim$ 1% \iff Kennicutt-Schmidt relation
 - $\sim 1\% \iff$ (Schmidt 1959, Kennicutt 1998)
- $\rho_0 \sim$ 0.1 H/cc in cosmo sims

problems

Star formation

6/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{\rho}_{\star} = \epsilon \frac{\rho_{\rm gas}}{t_{\rm ff}} \text{, for } \rho > \rho_0$$

 $\begin{array}{c} \rho_{\rm gas} & - \mbox{ gas density} \\ t_{\rm ff} & - \mbox{ free-fall time} \\ \epsilon & - \mbox{ local SF efficiency} \\ \rho_0 & - \mbox{ density threshold} \end{array} \right\} \ \ \mbox{ free parameters}$

calibration

- $\epsilon \sim 1\% \iff$ Kennicutt-Schmidt relation
 - $\sim 1\% \iff$ (Schmidt 1959, Kennicutt 1998)
- $ho_0 \sim$ 0.1 H/cc in cosmo sims
- problems
 - Kennicutt-Schmidt relation \sim 0.5–1 kpc

Star formation

6/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{\rho}_{\star} = \epsilon \frac{\rho_{\rm gas}}{t_{\rm ff}} \text{, for } \rho > \rho_0$$

- calibration
 - $-\epsilon \sim 1\%$ \iff Kennicutt-Schmidt relation
 - $\sim 1\%$ \iff (Schmidt 1959, Kennicutt 1998)
 - $\rho_0 \sim$ 0.1 H/cc in cosmo sims
- problems
 - Kennicutt-Schmidt relation \sim 0.5–1 kpc
 - ρ_0 interpretation?
- solution?
 - (more) realistic <u>ISM</u>
 - understand better SF
Star formation

 ρ_0 interpretation

Star formation

7/30

ρ_0 interpretation

 \bigcirc self-shielding

 \lesssim 1 cm $^{-3}$ (Schaye 2004)

Star formation

ρ_0 interpretation

- (1) self-shielding
 - \lesssim 1 cm $^{-3}$ (Schaye 2004)
- 2 supersonic turbulence onset
 - \sim 10 $\rm cm^{-3}$ (Renaud, Kraljic, & Bournaud 2012)

Star formation

7/30

ρ_0 interpretation

- (1) self-shielding
 - \lesssim 1 cm $^{-3}$ (Schaye 2004)
- 2 supersonic turbulence onset
 - \sim 10 cm $^{-3}$ (Renaud, Kraljic, & Bournaud 2012)
- 3 molecule formation
 - \sim 100 cm $^{-3}$ (Krumholz et al. 2009)

Star formation

8/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{\rho}_{\star} = \epsilon \frac{\rho_{\rm gas}}{t_{\rm ff}} \text{, for } \rho > \rho_0$$

calibration

- $\epsilon \sim$ 1% \iff Kennicutt-Schmidt relation
 - $\sim 1\% \iff$ (Schmidt 1959, Kennicutt 1998)
- $ho_0 \sim$ 0.1 H/cc in cosmo sims
- problems
 - Kennicutt-Schmidt relation \sim 0.5–1 kpc
 - ρ_0 interpretation?

Star formation

8/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{\rho}_{\star} = \epsilon \frac{\rho_{\rm gas}}{t_{\rm ff}} \text{, for } \rho > \rho_0$$

 $\begin{array}{c} \rho_{\rm gas} & - \mbox{ gas density} \\ t_{\rm ff} & - \mbox{ free-fall time} \\ \epsilon & - \mbox{ local SF efficiency} \\ \rho_0 & - \mbox{ density threshold} \end{array} \right\} \ \ \mbox{ free parameters}$

- calibration
 - $\epsilon \sim$ 1% \iff Kennicutt-Schmidt relation
 - $\sim 1\% \iff$ (Schmidt 1959, Kennicutt 1998)
 - $\rho_0 \sim$ 0.1 H/cc in cosmo sims
- problems
 - Kennicutt-Schmidt relation \sim 0.5–1 kpc
 - ρ_0 interpretation?
- solution?

Star formation

8/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{\rho}_{\star} = \epsilon \frac{\rho_{\rm gas}}{t_{\rm ff}} \text{, for } \rho > \rho_0$$

- calibration
 - $\epsilon \sim 1\%$ \Longleftrightarrow Kennicutt-Schmidt relation
 - $\sim 1\% \iff$ (Schmidt 1959, Kennicutt 1998)
 - $\rho_0 \sim$ 0.1 H/cc in cosmo sims
- problems
 - Kennicutt-Schmidt relation \sim 0.5–1 kpc
 - ρ_0 interpretation?
- solution?
 - (more) realistic ISM

Star formation

8/30

Sub-grid model

• Schmidt relation (Schmidt 1959):

$$\dot{\rho}_{\star} = \epsilon \frac{\rho_{\rm gas}}{t_{\rm ff}} \text{, for } \rho > \rho_0$$

- calibration
 - $\epsilon \sim 1\%$ \Longleftrightarrow Kennicutt-Schmidt relation
 - \sim 1% \iff (Schmidt 1959, Kennicutt 1998)
 - $\rho_0 \sim$ 0.1 H/cc in cosmo sims
- problems
 - Kennicutt-Schmidt relation \sim 0.5–1 kpc
 - ρ_0 interpretation?
- solution?
 - (more) realistic ISM
 - understand better SF

Star formation: starbursting mergers

(18/30)

Star formation: starbursting mergers

Star Shadows Remote Observatory

Teyssier, Chapon et al. 2010

Star formation: starbursting mergers

Star Shadows Remote Observatory

Teyssier, Chapon et al. 2010

Renaud et al. 2014

- resolution: 1.5 pc
- multiphase ISM
- feedback
- converged SFR

Renaud et al. 2014

Federrath et al. 2010

Star formation: starbursting mergers

22/30

Star formation: analytic model

Surface:
$$V=hS=\int_0^\infty rac{Mf(x)}{
ho}\,dx=rac{M}{\overline{
ho}}\int_0^\infty rac{f(x)}{x}\,dx$$

Star formation: analytic model

Surface:
$$V = hS = \int_0^\infty \frac{Mf(x)}{\rho} dx = \frac{M}{\overline{\rho}} \int_0^\infty \frac{f(x)}{x} dx$$

SFR: $\Sigma_{\text{SFR}} = \frac{M_{\text{SFR}}}{S} = \frac{1}{S} \int_0^\infty \frac{Mf(x)}{\rho} \rho_{\text{SFR}}(x) dx$

Gene

Star formation: analytic model

Surface:
$$V = hS = \int_0^\infty \frac{Mf(x)}{\rho} dx = \frac{M}{\rho} \int_0^\infty \frac{f(x)}{x} dx$$
SFR:
$$\Sigma_{SFR} = \frac{M_{SFR}}{S} = \frac{1}{S} \int_0^\infty \frac{Mf(x)}{\rho} \rho_{SFR}(x) dx$$

$$\Rightarrow$$
ral Σ_{SFR} :
$$\Sigma_{SFR} = h \frac{\int_0^\infty f(x) x^{-1} \rho_{SFR}(x) dx}{\int_0^\infty f(x) x^{-1} dx}$$

Star formation: analytic model

Surface:
$$V = hS = \int_0^\infty \frac{Mf(x)}{\rho} dx = \frac{M}{\overline{\rho}} \int_0^\infty \frac{f(x)}{x} dx$$

SFR: $\Sigma_{SFR} = \frac{M_{SFR}}{S} = \frac{1}{S} \int_0^\infty \frac{Mf(x)}{\rho} \rho_{SFR}(x) dx$
 \Rightarrow
eral Σ_{SFR} : $\Sigma_{SFR} = h \frac{\int_0^\infty f(x) x^{-1} \rho_{SFR}(x) dx}{\int_0^\infty f(x) x^{-1} dx}$

2 ingredients:

Gene

 $f(\boldsymbol{x})$ - how gas is distributed

Gene

Star formation: analytic model

Surface:
$$V = hS = \int_0^\infty \frac{Mf(x)}{\rho} dx = \frac{M}{\overline{\rho}} \int_0^\infty \frac{f(x)}{x} dx$$

SFR: $\Sigma_{SFR} = \frac{M_{SFR}}{S} = \frac{1}{S} \int_0^\infty \frac{Mf(x)}{\rho} \rho_{SFR}(x) dx$
 \Rightarrow
eral Σ_{SFR} : $\Sigma_{SFR} = h \frac{\int_0^\infty f(x) x^{-1} \rho_{SFR}(x) dx}{\int_0^\infty f(x) x^{-1} dx}$

2 ingredients: f(x) - how gas is distributed $ho_{
m SFR}(x)$ - how gas is converted into stars

Star formation: analytic model

PDF

- turbulence
- log-normal density distribution

$$\begin{split} f_{\sigma}(x) &= \frac{1}{x\sqrt{2\sigma^2\pi}} \exp\left[-\frac{\left(\ln(x) - \frac{\sigma^2}{2}\right)^2}{2\sigma^2}\right] \\ \sigma^2 &= \ln(1 + b^2 \mathcal{M}^2) \\ \mathcal{M} &= v_{\rm rms}/c_s \\ b - \text{ nature of the turbulence} \end{split}$$

Vazquez-Semadeni (1994) Nordlund & Padoan (1999) Wada & Norman (2001) ...

Star formation: analytic model

PDF

- turbulence
- log-normal density distribution

$$f_{\sigma}(x) = \frac{1}{x\sqrt{2\sigma^2\pi}} \exp\left[-\frac{\left(\ln(x) - \frac{\sigma^2}{2}\right)^2}{2\sigma^2}\right]$$

$$f(x) = (1 - m)f_{\sigma_1}(x) + mf_{\sigma_2}(x/\exp\delta)$$

Teyssier et al. (2010) Bournaud et al. (2011) García-Burillo et al. (2012) Renaud et al. (2014) ...

Renaud, Kraljic & Bournaud (2012)

Star formation: analytic model

normal w/o feedback:

$$\Sigma_{\rm SFR} = \epsilon \sqrt{\frac{8G}{3\pi}} \frac{\exp(\frac{3\sigma^2}{8})}{\sqrt{h}} \Sigma_{\rm gas}^{3/2} \operatorname{erfc}\left(\frac{\ln(\frac{\rho_0 h}{2\log \sigma}) - \sigma^2}{\sigma\sqrt{2}}\right)$$

Star formation: analytic model

normal w/o feedback:

$$\Sigma_{\rm SFR} = \epsilon \sqrt{\frac{8G}{3\pi}} \frac{\exp(\frac{3\sigma^2}{8})}{\sqrt{\hbar}} \Sigma_{\rm gas}^{3/2} \operatorname{erfc}\left(\frac{\ln(\frac{\sigma c \hbar}{\Sigma_{\rm gas}}) - \sigma^2}{\sigma \sqrt{2}}\right)$$

Star formation: analytic model

normal w/o feedback:

$$\Sigma_{\rm SFR} = \epsilon \sqrt{\frac{8G}{3\pi}} \frac{\exp(\frac{3\sigma^2}{8})}{\sqrt{h}} \Sigma_{\rm gas}^{3/2} \operatorname{erfc}\left(\frac{\ln(\frac{\rho_0 h}{\Sigma_{\rm gas}}) - \sigma^2}{\sigma\sqrt{2}}\right)$$

Star formation: analytic model

normal w/o feedback:

$$\Sigma_{\rm SFR} = \epsilon \sqrt{\frac{8G}{3\pi}} \frac{\exp(\frac{3\sigma^2}{8})}{\sqrt{\hbar}} \Sigma_{\rm gas}^{3/2} \operatorname{erfc}\left(\frac{\ln(\frac{\rho_0 \hbar}{\Sigma_{\rm gas}}) - \sigma^2}{\sigma\sqrt{2}}\right)$$

mergers w/o feedback:

$$\begin{split} \Sigma_{\rm SFR} &= \epsilon \sqrt{\frac{8G}{3\pi}} \frac{\Sigma_{\rm gas}^{3/2}}{\sqrt{h}} \left[(1-m) \exp\left(\frac{3}{8}\sigma_1^2\right) \operatorname{erfc}\left(\frac{\ln\left(\frac{\rho_0 h}{\Sigma_{\rm gas}}\right) - \sigma_1^2}{\sqrt{2}\sigma_1}\right) \right. \\ &+ m \exp\left(\frac{3}{8}\sigma_2^2\right) \exp\left(\frac{3}{2}\delta\right) \operatorname{erfc}\left(\frac{\ln\left(\frac{\rho_0 h}{\Sigma_{\rm gas}}\right) - \sigma_2^2 - \delta}{\sqrt{2}\sigma_2}\right) \right] \end{split}$$

Star formation: analytic model

normal with feedback:

$$\begin{split} \Sigma_{\rm SFR} = & \epsilon \sqrt{\frac{8G}{3\pi}} \frac{\exp\left(\frac{3}{8}\sigma^2\right)}{\sqrt{h}} \Sigma_{\rm gas}^{3/2} \left[\operatorname{erfc}\left(\frac{\ln\left(\frac{\rho o h}{\Sigma_{\rm gas}}\right) - \sigma^2}{\sqrt{2}\sigma}\right) \right. \\ & \left. - \operatorname{erfc}\left(\frac{\ln\left(\frac{\epsilon_s^2 3\pi h}{t_s^2 32G\epsilon^2 \Sigma_{\rm gas}}\right) - \sigma^2}{\sqrt{2}\sigma}\right) \right] \right. \\ & \left. + \frac{\epsilon_s}{2t_s} \Sigma_{\rm gas} \operatorname{erfc}\left(\frac{\ln\left(\frac{\epsilon_s^2 3\pi h}{t_s^2 32G\epsilon^2 \Sigma_{\rm gas}}\right) - \frac{\sigma^2}{2}}{\sqrt{2}\sigma}\right) \right] \end{split}$$

Star formation: analytic model

merger with feedback:

$$\begin{split} \mathrm{sFR} &= \epsilon \sqrt{\frac{8G}{3\pi}} \frac{\Sigma_{\mathrm{gas}}^{3/2}}{\sqrt{h}} (1-m) \exp\left(\frac{3}{8}\sigma_1^2\right) \left[\mathrm{erfc}\left(\frac{\ln\left(\frac{\rho_0 h}{\Sigma_{\mathrm{gas}}}\right) - \sigma_1^2}{\sqrt{2}\sigma_1}\right) \right) \\ &- \mathrm{erfc}\left(\frac{\ln\left(\frac{\epsilon_s^2 3\pi h}{t_s^3 32G\epsilon^2 \Sigma_{\mathrm{gas}}}\right) - \sigma_1^2}{\sqrt{2}\sigma_1}\right) \right] \\ &+ (1-m) \Sigma_{\mathrm{gas}} \frac{\epsilon_s}{2t_s} \mathrm{erfc}\left(\frac{\ln\left(\frac{\epsilon_s^2 3\pi h}{t_s^2 32G\epsilon^2 \Sigma_{\mathrm{gas}}}\right) - \frac{\sigma_1^2}{2}}{\sqrt{2}\sigma_1}\right) \\ &+ \epsilon \sqrt{\frac{8G}{3\pi}} \frac{\Sigma_{\mathrm{gas}}^{3/2}}{\sqrt{h}} m \exp\left(\frac{3}{2}\delta\right) \exp\left(\frac{3}{8}\sigma_2^2\right) \left[\mathrm{erfc}\left(\frac{\ln\left(\frac{\rho_0 h}{\Sigma_{\mathrm{gas}}}\right) - \sigma_2^2 - \delta}{\sqrt{2}\sigma_2}\right) \\ &- \mathrm{erfc}\left(\frac{\ln\left(\frac{\epsilon_s^2 3\pi h}{t_s^3 32G\epsilon^2 \Sigma_{\mathrm{gas}}}\right) - \sigma_2^2 - \delta}{\sqrt{2}\sigma_2}\right) \right] \\ &+ m \Sigma_{\mathrm{gas}} \frac{\epsilon_s}{2t_s} \exp \delta \mathrm{erfc}\left(\frac{\ln\left(\frac{\epsilon_s^2 3\pi h}{t_s^2 32G\epsilon^2 \Sigma_{\mathrm{gas}}}\right) - \frac{\sigma_2^2}{2} - \delta}{\sqrt{2}\sigma_2}\right) \end{split}$$

Comparison with simulations

Comparison with simulations

Problems

• number of physical processes we know are important, but remain unsolved (feedback)

Problems

- number of physical processes we know are important, but remain unsolved (feedback)
- which physical processes regulate the multi-phase structure of the ISM?

Problems

- number of physical processes we know are important, but remain unsolved (feedback)
- which physical processes regulate the multi-phase structure of the ISM?
- what is the main driver of galactic outflows?

outilou

Problems

- number of physical processes we know are important, but remain unsolved (feedback)
- which physical processes regulate the multi-phase structure of the ISM?
- what is the main driver of galactic outflows?

Important processes

- and teedback • core-collapse explosions
- stellar winds
- radiation
- AGN feedback
- magnetic fields
- cosmic rays ...