WAVEFORMS FOR GRAVITATIONAL WAVE

ASTRONOMY

Deborah Ferguson Petnica Summer Institute | August 2022

MERGING BINARY BLACK HOLES PRODUCE GRAVITATIONAL WAVES

LIGO Hanford

LIGO Livingston

Operational Planned

Gravitational Wave Observatories

KAGRA

LIGO India

Gravitational-Wave Transient Catalog

Detections from 2015-2020 of compact binaries with black holes & neutron stars

Time (s)

Sudarshan Ghonge | Karan Jani

VANDERBILT UNIVERSITY®

Hanford, Washington (H1)

Livingston, Louisiana (L1)

LIGO Scientific and Virgo Collaborations (2016)

GRAVITATIONAL WAVE SEARCHES

DATA ANALYSIS

Modeled Searches (Light Blue)

Use waveform template banks to detect and characterize GW signals

Unmodeled Searches (Dark Blue)

Identify excess power and reconstruct the signal without models, e.g. using sine-Gaussians

WAVEFORM GENERATION

Buonanno and Sathyaprakash 2014

9 dimensional parameter space that needs to be filled to generate template banks for analysis with current and future detectors

NUMERICAL RELATIVITY WAVEFORMS

- Numerically solve Einstein's Equations
- \blacktriangleright Decompose into 3+1 to create an initial value / boundary problem
 - Solve constraint equations
 - Solve evolution equations
- > Most accurate method of studying merger of comparable mass compact objects
- ► Limitations
 - Computationally expensive
 - Discrete parameter space coverage
 - Challenging at near maximal spins and high mass ratio

ANALYTIC MODELS

- Quicker to compute
- Continuous coverage within valid parameter space
- ► Limitations
 - Additional sources of error due to fitting
 - Still limited by parameter space

SOME TYPES OF MODELS

Phenomenological Models

- ► e.g. IMRPhenomXHM
- ► Use an analytical ansatz
- ► Fit to NR, PE, EOB waveforms

- ► e.g. NRSur7dq4
- Create a basis to represent the NR
 - training set
- Interpolate between NR waveforms

NR Surrogate Models

Effective-One-Body Models

- ► e.g. SEOBNRv4PHM
- ► Maps the two body problem to that of a test mass orbiting around a single BH in a deformed Kerr metric
- Aligned spin version calibrated to NR
- Precessing version tested on, but not calibrated to NR waveforms

NEXT GENERATION **GRAVITATIONAL WAVE DETECTORS**

SPACE BASED – LASER INTERFEROMETER SPACE ANTENNA (LISA)

- ► Millihertz band
- ESA mission with NASA as a junior partner
- 4 year mission with possible 6 year extension
- ► 3 arm structure
- ► 2.5 Mkm arm length

LISA SOURCES

- Massive black hole binaries (MBHBs)
- Extreme mass-ratio inspirals (EMRIs)
- Intermediate mass-ratio inspirals (IMRIs)
- ► Galactic binaries (GBs)
- Stellar-origin black hole binaries (SOBHBs)
- ► Transients
- ► Beyond GR

GROUND BASED – EINSTEIN TELESCOPE (ET)

- Similar frequency band to LIGO, but with reach to lower frequencies
- ► Much more sensitive
- Triangular structure with three nested detectors
- ► Underground
- ► Two interferometers for each detector, one sensitive at lower frequencies, and one at higher

ET Design Study Team

GROUND BASED – COSMIC EXPLORER (CE)

- Similar frequency band to LIGO, but with reach to lower frequencies
- ► Much more sensitive
- ► L shaped
- \succ 40 km arms

Evan Hall/Massachusetts Institute of Technology; B. S. Sathyaprakash/Pennsylvania State University

CHALLENGES

- Loud signals
- Long signals
- Overlapping signals
- Anticipated significant eccentricity
- Anticipated high spins

CHALLENGES

WAVEFORM CHALLENGES

- Improved waveform accuracy
 - ► Detection
 - ► Parameter estimation
 - ► Contamination
- Longer waveforms (hybridized?)
- Expansion of parameter space and denser catalogs
 - ► Eccentricity
 - ► Intermediate mass ratio
 - Increased efficiency
- Beyond GR catalogs
- ► Matter effects

PARAMETER SPACE COVERAGE

alx

a1v

alz

a2x

a2y

a2z

q

► Needs

- ► High mass ratio
- ► Eccentricity
- ► Precession

NUMERICAL RELATIVITY RESOLUTION REQUIREMENTS

Ferguson, et al. 2021

CHALLENGES FACING MODELS

- Shaded regions show the mismatches for models and numerical relativity
- Diagonal lines show the required mismatches for a given SNR depending
- High SNRs of future detectors will require significant improvement

H

SUMMARY

- BBH, NSBH, and BNS
- Searching for and characterizing these signals relies upon template waveforms
- These waveform templates can come from:
 - ► Self-force
 - Post-newtonian
 - Numerical relativity
 - > Analytic models
- As we prepare for future detectors, there are still many challenges facing the waveform community

Gravitational-wave detectors have observed 90 compact binary mergers including

SUPPLEMENTAL

BURST SEARCHES

- Searches for excess power
- Coherent Wave-Burst (cWB)
- ► omicron-LIB (oLIB)
- ► BayesWave (BW)

CBC SEARCHES

- Search for signals based on templates
- Matched filtering
- PyCBCGstLAL
- ► RIFT