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1 Introduction

Black holes were found as solutions to Einstein’s equations more than a 100 years ago.
Yet, they still have a lot to teach us about the fundamental nature of the universe. When
people say that they are working on problems related to quantum gravity, they always
include black holes as one of their research directions. But how is it that such simple-
seeming objects, which are characterized by only a few parameters, form such a basis for
studying the quantum theory of gravity?

Black holes are extreme objects. If a star collapses and forms a white dwarf, not a
lot of things happen: the white dwarf is a more compact object, whose core is supported
only by electron degeneracy pressure, causing it to be extremely dense. Nevertheless, this
object will radiate as any thermodynamic object would, and in principle, one would have
no problem entering the core of a white dwarf1. If one was to live on the surface of such
a dwarf, one would have some trouble when wanting to take-off – but not too much. The
surface gravity of a solar-mass white dwarf is 350,000 times that of gravity on Earth, and
the escape velocity is ∼ 103 km/s. However, if a star is massive enough, it will collapse to
a black hole – a completely different object. A black hole does not have a surface on which
one can stand; one will keep falling in until one reaches a singularity – a label that indicates
our theory broke down. If one does not want to end up reaching the singularity, one would
need the escape velocity to be bigger than the speed of light! That includes radiation –
photons travel at the speed of light, and if they are trapped behind an event horizon, they
will never be able to escape; hence the term black hole.

So we see how peculiar black holes are – they seem to be sinks of the universe, not
letting anything escape the tight grip of the horizon. That sounds like nothing we know in
nature! But even though the theory of General Relativity tells us this behaviour is perfectly

1One will be burned though; the average temperature of the inner layers is approximately 107 K.
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fine (after all, black holes can be found as many solutions to the main equations of gravity),
does this behaviour make sense when combined with other laws of physics? If not, then
there must be something wrong with either GR or other laws!

One of the laws that must hold in nature, simply based on statistics, are the laws of
thermodynamics – in particular the second law. There is even a famous quote by Eddington
that says:

"The law that entropy always increases holds, I think, the supreme position
among the laws of Nature. If someone points out to you that your pet theory of
the universe is in disagreement with Maxwell’s equations — then so much the
worse for Maxwell’s equations. If it is found to be contradicted by observation
— well, these experimentalists do bungle things sometimes. But if your theory
is found to be against the second law of thermodynamics I can give you no hope;
there is nothing for it but to collapse in deepest humiliation."

Why did Eddington proclaim such a bold statement?

Thermodynamics deals with concepts of heat, energy, work, temperature, and, most
centrally, entropy. It has the benefit of being summarized in 3-4 fundamental laws. It
has applications to phases of matter like gases and liquids, chemical reactions, cell biology,
all the way up to the universe at its largest scales. Statistical mechanics has a goal of
explaining/deriving thermodynamics from the microscopic laws of physics, with its main
mathematical tool the probability theory applied to many degrees of freedom. For instance,
a box containing gas has ∼ Avogadro’s number worth of molecules, and comparable numbers
of degrees of freedom. Instead of considering each possible molecule, we can compose an
ensemble of macroscopic states and take averages to get key statistical quantities, like
energy, volume, etc. This then allows us to predict macroscopic behavior without the precise
knowledge of the microscopic state. Moreover, large fluctuations from the average behavior
are extraordinarily unlikely – the probability of all air molecules in a box accumulating
randomly in one corner of the box is extremely unlikely.

Probability theory arises in statistical mechanics because we can’t obtain complete
knowledge of the microscopic state of the system. Even if we knew the microscopic state,
we would still average over the microscopic details of the state when computing expected
observations. The main mathematical tools are probability theory and combinatorics –
counting, in other words.

Since the basis of statistical mechanics lies in probability theory, it is evident that any
system with large numbers will correspondingly follow the laws of thermodynamics. So,
seeing if our black holes obey the second law of thermodynamics looks like a prominent way
to test the theory of General Relativity – or at least, its black hole solutions.

2 Testing the second law of thermodynamics

How can we test the second law? We will loosely follow the logic that Jacob Bekenstein
outlined in his famous paper in 1972 on exactly this topic.
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First, we need to find an isolated system. So, for our purposes, let’s take a cup of some
good hot Turkish coffee2 as one part of our system, and let’s take a black hole as the other.
Together, the coffee cup and the black hole form the whole universe – also known as an
isolated system. The claim is now that the entropy must increase in such a system. Let us
put the coffee cup on a trajectory towards the black hole – these are our initial conditions.
And now, let’s see what happens: our cup falls across the horizon, never to be seen again.
But a coffee cup carried some entropy with it, say Sc. Once the cup crossed the horizon,
the total entropy of the observable universe did not increase – in fact, it decreased! In other
words, we lost that entropy to the depths of the black hole.

This was a very simple thought experiment, and yet we immediately came to a radical
conclusion: the laws of thermodynamics do not seem to hold when a black hole is involved.
But hold on a second: are we sure that’s the correct conclusion? Why can’t we simply say
that the entropy is inside the black hole: too bad for you that you can’t reach it anymore,
but it surely exist within the black hole itself. In other words, the cup still exists inside
the black hole, presumably with its entropy intact, and so, presumably, the second law of
thermodynamics still holds.

Compelling as it may sound, such reasoning verges on taking us out of the realm of
science! For stating that somehow the entropy still exists inside the black hole, but we
just can’t see it, simply puts the laws of thermodynamics as unfalsifiable. And the laws of
physics should continue to make sense in our laboratories, whether or not a black hole forms
in one of the test tubes. In other words, we could never find a counterexample because
we can always declare there was a black hole somewhere in the process. And black holes
smaller than a coarse-grained scale will not be detected.

Led by this conviction, Bekenstein proposed a resolution: we have to assign an entropy
to black holes. And there even exists a perfect candidate for it – the area of a black hole.
To be more precise, the entropy of a black hole will be given by

S =
AH

4Gℏ
, (2.1)

where G is the Newton’s constant and ℏ is the Planck constant. The horizon area AH is
measured in Planck units, ℓp =

√
Gℏc−3 = 10−33 cm, where c represents the speed of light

(and we will usually set c = 1). Let us try to motivate this peculiar choice for an entropy.
The key reason behind the choice of an area as the entropy lies in a theorem proven by

Stephen Hawking– he proved a statement known as the area theorem. The area theorem says
that, under some reasonable conditions (like the fact that energy has to be positive along
light ray trajectories and that we do not end up forming an uncontrollable singularity), the
area of a black hole can never decrease. The intuitive picture is clear: black holes do not
let even photons out, so they cannot shrink in size, and if we throw something inside a
black hole, that something can only increase the size – we will see this explicitly shortly.
The proof of the theorem is not difficult, although it requires some knowledge of differential
geometry within the scope of General Relativity.

2Note: the nature of the coffee does not matter for the thought-experiment, nor for a real one.
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Area never decreasing is strikingly similar to the statement that the entropy never
decreases; indeed, this was the reason why Bekenstein thought the horizon area can serve its
purpose and save the second law of thermodynamics. Note also that the area is measured in
Planck units: the Planck length is comprised out of the three most fundamental constants
of Nature: gravity (G), quantum physics (ℏ) and relativity (c)3. However, assigning an
entropy to a black hole is not a conceptually trivial task – the area theorem is an exact
theorem in differential geometry, whereas the second law of thermodynamics is only a
statistical law. Therefore, Bekenstein asserted that the area of a geometric surface is more
fundamentally a statistical quantity. Nearly half a century later, this remains the single
deepest insight we have gained into the fundamental nature of space and time. As we will
see, it has proven extraordinarily fruitful and lies at the center of today’s most promising
avenues for understanding the quantum theory of gravity.

Exercise: Read Bekenstein’s original paper. It can be found here.

Note that we immediately come to an interesting conclusion for all gravitating systems.
Given that the second law seems to be true, one is led to the conclusion that A

4Gℏ must be
the most entropy that can be contained in a region surrounded by a surface of area A. To
maximize the volume one would take a sphere, and if there were more entropy than A

4Gℏ ,
but no black hole, one could simply add more mass until a black hole formed, at which
point the entropy would go down to A

4Gℏ , violating the second law. Thus the entropy must
have been less than A

4Gℏ to begin with. Putting this statement into an equation, we have

S ≤ A

4Gℏ
, (2.2)

which is known as the entropy bound. Roughly it says that the maximum amount of entropy
in a spacetime region scales with the area of the boundary of the region. And if you try to
excite more degrees of freedom, you make a black hole instead.

3 Thermodynamics of black holes

A notable feature of systems with some entropy and energy is that they also have a
temperature – a feature seen through the first law of thermodynamics. If we couple our
system to a cooler bath, our system will transfer its heat until a thermal equilibrium is
achieved; in other words, our system must radiate. This suggests that black holes with a
higher temperature than their surroundings will also radiate – this seems to be contradicting
the very name of a black hole. How can a system radiate when lightrays – the fastest
excitations of the field – cannot escape the black hole?

This line of reasoning is why Hawking thought that Bekenstein’s calculation must be
wrong. In order to prove that, he set out to examine the behaviour of fields near a black
hole and prove that it cannot radiate. Funnily enough, he did find that black holes radiate
once one includes quantum effects. This radiation is now known as Hawking radiation.

3Why is there an ℏ in this equation? We will come back to this point; in the meantime, try to think
about it.
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Hawking radiation through particle production in an external field

Let us try and argue how black holes might radiate by studying particle production in an
external field first. In other words, we want to study the production of particles in a given
background quantum field which arises due to the fluctuations of the field. Energy required
for this materialization of particles can be provided if there is an external field to which the
field couples. Such quantum fluctuations are described by a 2-point function,

⟨ϕ(x)ϕ(0)⟩ ∼ e−
x
λc , (3.1)

where λc = ℏ
mc is the (reduced) Compton wavelength, comprised of the mass of the field

excitation m, speed of light c and the Planck constant ℏ. The Compton wavelength plays a
role of a quantum-mechanical cutoff below which quantum fluctuations become important;
in other words, a significant amount of entanglement is generated. The 2-point function
tells us about the probability to spontaneously nucleate an entangled pair of quanta of the
field which are separated by a distance x – it is a probability amplitude. Even though we
did not derive it here, we see that it makes sense: if the separation between the particles is
great, the probability to nucleate such particles goes down, and vice versa.

Now let us rewrite the nucleation distance by the energy required for this pair production
process. In order to estimate such energy, we can imagine two capacitors separated by the
same distance x that play the role of the particles produced4. The energy that is stored
between two capacitors plays the role of the necessary energy required for this popping-
up process – it is the potential energy. And we know how to calculate the stored energy
ϵ between the capacitors: the field is electric E⃗ and the coupling is the electromagnetic
coupling e, so we have

eEx = ϵ, (3.2)

To use this formula more generally, we need to understand what it is telling us. The force
field F , which in this case is the electric field, along the region x produces energy ϵ, and
the strength of that energy production is indicated by the strength of the field, a.k.a. the
coupling gF (in the electric case e). That is, generically, we have

gFFx = ϵ. (3.3)

This energy ϵ now represents our nucleated pair, and so ϵ = 2mc2. We can plug instead of
x in (3.1) this formula, and calculate the probability – given by the square of the norm of
the probability amplitude,

Γ ∼ |⟨ϕ(x)ϕ(0)⟩|2 ∼ exp

{
−4m2c3

ℏgFF

}
. (3.4)

This Γ represents the probability for pair creation (per unit volume, per unit time). We
obtained this probability through a rough argument, but it does give the correct qualitative
behaviour, and more importantly, this argument emphasizes the important physics behind

4To refresh your memory on capacitor plates and the energy calculation, a quick recap can be found
here.
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the process. In the case of the electric field, this calculation was first done, in much more
detail, by Schwinger in the 1950s, and is known as the Schwinger pair production [1].

A proper calculation in quantum field theory would fix the ∼ into a = sign. Such a
calculation involves a tunneling process (hence the exponential suppression) and can be
evaluated through a WKB approximation to give something like

Γ = A exp

{
−γ 4m

2c3

ℏgFF

}
, (3.5)

where A is calculated through the 1-loop determinant – basically the first-order perturbative
quantum correction – and γ is a constant factor of O(1) which depends on the field content
and the coupling. Let us now apply (3.4) to a gravitational field. Gravitational field is
always created by some massive body, say the Earth or a black hole; let us focus on black
holes here5. The gravitational field strength is given by the surface gravity κ, and the
coupling is given by the mass m of our particles that we want to nucleate. This is because
gravity couples to all matter through their energy. The probability for a pair production is
then given by

Γ ∼ exp

{
−γ 4m

2c3

ℏmκ

}
= exp

{
−γ 4mc

3

ℏκ

}
. (3.6)

We see that there is a linear dependence on the energy mc2 in the exponent, which is
indicative of a Boltzmann distribution

Γ ∼ e
− E

TH , (3.7)

where we have rewritten
TH =

ℏκ
4γc

, (3.8)

with TH standing for Hawking temperature. This probability (3.7) gives us a thermal
spectrum, with the temperature TH ∝ κ. In other words, our black hole is expected to
radiate as a black-body! Notice that this thermality does not appear for the Schwinger
process, for instance. But it does appear in the case of a gravitational field since gravity
couples universally to the energy/mass. It is very suggestive that the universal character
of gravity appears to be related to a universal thermal behavior.

Before we move on, we should note the caveats associated with this argument:
5Why don’t we see pair production due to the gravitational field of Earth? In that case, the field

strength is pretty small compared to the black hole of the same size. So, if we don’t want our probability
to be completely suppressed, one would need to pair-produce very low energy particles. However, such
light particles have a much longer wavelength – in fact, much bigger than Earth’s radius! One can see this
through the acceleration parameter, a = GM

R2 , where M is the mass of the Earth, R its radius and G is the
Newton’s constant. The characteristic length associated with this acceleration is given by λa = a−1 = R2

GM

and we see that, unless GM ∼ R, we will have λa >> R. This is to say that the characteristic length is
much bigger than the radius of the planet. The importance of this λa comes in the probability instead of x
in (3.1), so we see that for non-negligible probability, λc ≳ λa >> R. Our approximations break down at
this point since one cannot treat the nucleated pair as a pair of particles anymore.
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• We only derived a qualitative result. Hawking performed a proper calculation in
which he fixed the constants that we could not. For instance, γ = π/2, and so the
proper Hawking temperature is given by

TH =
ℏκ
2π
, (3.9)

where we set c = 1;

• This argument is valid for massive particles. However, Hawking’s calculation works
for massless particles as well.

Note another feature of this calculation: since the black hole is responsible for supplying
the energy required for the pair production, the black hole will then lose some of its energy
once the pair is created. From the point of view of produced particles, one has to have a
positive energy with respect to the asymptotic observer, and the other will have negative
energy, since E1 + E2 = 0, where E1 > 0. For consistency reasons, the negative energy
particle must fall into the black hole. The change in black hole’s mass is exactly then
δM = E2 = −E1 < 0.

The near-horizon geometry

Having seen that the surface gravity plays a crucial role in defining the temperature of our
black hole, we will make a short detour to derive what κ is in terms of other parameters
of the black hole. We will do so by going very close to the horizon of a black hole – also
known as the Rindler limit. We will do this example for a Schwarzschild black hole,

ds2 = −(1− rh
r
)dt2 +

dr2

1− rh
r

+ r2dΩ2, (3.10)

where rh = 2MG. To focus on the near-horizon region, we take the horizon radius and
expand around it,

r = rh + ξ, ξ << rh. (3.11)

This new parameter ξ indicates the distance to the horizon, and as we see, it is very small.
Now we can expand our Schwarzschild metric for this new coordinate,

rh
r

=
rh

rh + ξ
= 1− ξ

rh
+O

(
ξ2

r2h

)
, dr = dξ. (3.12)

The metric now takes the form

ds2 = − ξ

rh
dt2 + rh

dξ2

ξ
+ r2hdΩ

2. (3.13)

We can change the coordinates now conveniently to

rh
dξ2

ξ
= dρ2 −→ ξ =

ρ2

4rh
, (3.14)
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so that

ds2 = − ρ2

4r2h
dt2 + dρ2 + r2hdΩ

2. (3.15)

We see that this geometry factorizes: the (t, r) part is not affected by the sphere part (θ, ϕ)
since no metric components depend on these parameters. The (t, r) part of the metric is

ds2 = − ρ2

4r2h
dt2 + dρ2, (3.16)

and it is just a slightly unusual way of writing flat spacetime. One can see that by
computing the Ricci scalar of this geometry (it should be zero), or by finding a suitable set
of coordinates in which the metric is manifestly flat. If we change

X = ρ cosh

(
t

2rh

)
, T = ρ sinh

(
t

2rh

)
, (3.17)

we obtain
ds2 = −dT 2 + dX2, (3.18)

that is, we obtained a flat spacetime. Likewise, we recognize the metric form (3.16) as the
Rindler metric, with κ

κ2 =
1

4r2h
−→ ds2r = −ρ2κ2dt2 + dρ2 (3.19)

the surface gravity parameter. In static, asymptotically flat spacetimes, surface gravity is
simply the acceleration of a static observer near a black hole as measured by the asymptotic
observer. Another way to view is through the tension of a string near the horizon: if one
stands far away from the black hole holding a string, and one dangles an object on the
string (say, a ball) near so it hovers near the horizon, then one can measure the tension of
the string to be κMobject. From this simple argument, one cannot see that, but in Chapter
6 (“Killing horizons”) of Carroll’s book [2], this is nicely laid out. For us, it is important
that we obtained the surface gravity in terms of black hole parameters,

κ =
1

4GM
. (3.20)

The black hole laws

Having confirmed that black holes radiate with some temperature TH and that they have
some entropy S ∝ A, we can see that these quantities obey the laws of thermodynamics.
Let us take the example of the Schwarzschild black hole,

ds2 = −
(
1− 2MG

r

)
dt2 +

dr2

1− 2MG
r

+ r2dΩ2, (3.21)

where M stands for the black hole mass, and dΩ2 = dθ2+sin2 θdϕ2. The area of this black
hole is given by the size of the sphere of radius rh = 2MG. When Bekenstein first proposed
the horizon area as the black hole entropy, he could only argue it qualitatively (with correct
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units) – he could not get the factor of 4 in the entropy formula for instance. This factor
was obtained by Hawking when he plugged in his temperature in the first law; this is what
we will do now.

The entropy can be represented as

S = α
A

Gℏ
= α

4πr2h
Gℏ

= α16πM2Gℏ−1, (3.22)

where α is the factor we would like to determine. The energy of the black hole is given by
its mass M , so in the first law

dM = THdS (3.23)

we will simply replace the quantities that we obtained through Bekenstein and Hawking,

dM =
ℏκ
2π
d
(
α16πM2Gℏ−1

)
= 16ακGMdM, (3.24)

so
16ακGM = 1. (3.25)

We can obtain κ through the Rindler limit of black holes, which gives us κ = 1
4GM from

which we can see that
α = 1/4, (3.26)

just like we needed. Even though we obtained this result for the Schwarzschild black hole,
one can show that this relation between the area and the entropy is generically true for all
black holes. However, the surface gravity relation is not – it depends on the asymptotics
of the black hole spacetime, and therefore, the temperature dependence on the mass will
change as well; for instance, Anti-de Sitter black holes have temperature that is linearly
dependent on the mass.

Exercise: The Schwarzschild black hole can exist in spacetimes with other cosmological
constants. For instance, the Schwarzschild-AdS black hole is described by

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2,

with
f(r) = 1− 2MG

r
+ k2r2,

where k is the curvature of the AdS. Calculate the entropy and the temperature of this
black hole. Then, calculate the specific heat, cv = dE

dT , for this black hole and also for an
asymptotically flat (AF) black hole. The specific heat tells us about the thermodynamic
stability of systems; what can you conclude about the stability of Sch-AdS and Sch-AF
black holes?

We showed here that Schwarzschild black holes obey the first law, but one can actually
prove this law for all black holes, including when black holes add additional work terms
to the first law. As a matter of fact, Bardeen, Carter and Hawking (BCH) proved all
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three6 laws of ’black hole mechanics’ before they were understood to be the actual laws of
thermodynamics7. We will not try to prove them here, but simply list them.

The 0th law:

• Thermodynamics: The temperature T of body at thermal equilibrium is constant
throughout the body. Otherwise heat will flow from hot spots to the cold spots.

• Black holes: Stationary black holes have constant surface gravity κ on the event
horizon. Can be proven regardless of spherical symmetry.

The 1st law:

• Thermodynamics: Energy is conserved, dE = TdS + µdQ + ΩdJ , where E is the
energy, Q is the charge with chemical potential µ and J is the spin with chemical
potential Ω.

• Black holes: Energy is conserved, dM = κ
8πGdA + µdQ + ΩdJ . For a Schwarzschild

black hole we have µ = Q = 0 because there is no charge or spin.

The 2nd law:

• Thermodynamics: In a physical process the total entropy S never decreases, ∆S ≥ 0.

• Black holes: The area theorem tells us that the net area in any process never decreases,
∆A ≥ 0. For example, two Schwarzschild black holes with masses M1 and M2 can
coalesce to form a lighter black hole of mass M < M1 +M2, due to the gravitational
waves that carry out the rest of the mass. However, this lighter black hole is still
bigger in area since A ∝M2 and so, (M1 +M2)

2 > M2
1 +M2

2 .

The 3rd law:

• Thermodynamics: It is impossible by any procedure, no matter how idealized, to
reduce the temperature to zero by a finite sequence of operations.

• Black holes: One cannot reduce the surface gravity κ to zero by a finite sequence
of operations. This law has not been proven, but it is believed to be true. One
can imagine bringing the surface gravity all the way to zero, and then continuing
beyond – this would create an uncontrollable, naked singularity which is believed to
be non-existing; this statement is known as the cosmic censorship conjecture.

6They also note that the fourth law can be written in an analogous form, but they could not prove it.
7Note also that in the original paper by BCH (which was written before Hawking’s temperature

derivation), the horizon area and the black hole surface gravity were seen only as analogous to the entropy
and the temperature – their paper therefore sometimes mentions "...it is clear that the black hole cannot
radiate..." among other statements, which we now know is not true.
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Exercise: Calculate the entropy and the temperature for a Reissner-Nordstrom black hole,

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2,

with

f(r) = 1− 2MG

r
+
Q2

r2
, Aµdx

µ = −Q
r
dt, Ftr =

Q

r2
,

where Aµ is the vector potential for this charged black hole of charge Q and mass M . The
component of the field strength Ftr is the electric field in the radial direction, so this is
exactly the gauge field corresponding to a point source of charge Q at r = 0. Write down
the first law and see what is the work term.

4 Euclidean methods in gravity

Reading off the thermodynamic quantities from the metric only gives us tree-level answers,
and one cannot get quantum corrections via this method. For higher-loop contributions –
quantum corrections – one needs to employ a different approach. This approach is known
as the Euclidean gravitational path integral, but before we delve into it, we will recall how
it works in the case of quantum mechanics.

Quantum mechanics at finite temperature

Let us start with a one-dimensional relativistic particle in some external potential V (q),
where q is the position of the particle, with the Hamiltonian H = p2

2m +V (q). The evolution
operator is given by

U(t) = exp

{
t

iℏ
H

}
, H ̸= H(t), (4.1)

so states evolve as
|ψ(t)⟩ = U(t) |ψ(t = 0)⟩ . (4.2)

We are used to thinking about canonical quantization when it comes to quantum mechanics:
we start with some classical variables, and we promote them to operators acting on a
Hilbert space. However, there is a different way of obtaining quantized particles and fields.
This method is known as the path integral approach, and it was developed by Richard
Feynman, who used his intuition to define a probability amplitude – the matrix element of
the evolution operator – in a very pictorial way8. It replaces the classical notion of a single,
unique classical trajectory for a system with a sum, or functional integral, over an infinity
of quantum-mechanically possible trajectories to compute the probability amplitude. In
quantum mechanics, we cannot speak of the particle taking any well-defined trajectory
between two points. Instead, we can only speak of the probability of finding the particle at
these locations. That is, all that can be determined is the relative probability of the particle
taking one path or another. Feynman’s insight was this - the total transition probability

8A very detailed derivation can be found here; just ignore the language, and follow the equations.
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amplitude can be obtained by summing the amplitudes of the particle having taken any
individual path. So, the three things to keep in mind:

• The probability for an event is given by the squared modulus of a complex number
called the "probability amplitude";

• The probability amplitude is given by adding together the contributions of all paths
in configuration space;

• The contribution of a path is proportional to exp
{

i
ℏS

}
, where S is the action given

by the time integral of the Lagrangian along the path.

In order to find the overall probability amplitude for a given process one integrates the
amplitude over the space of all possible paths of the system in between the initial and final
states, including those that are absurd by classical standards. In calculating the probability
amplitude for a single particle to go from one space-time point to another, it is correct to
include paths in which the particle describes elaborate curves in which the particle shoots
off into outer space and flies back again, and so forth. The transition amplitude is then
obtained as

K(q2, t2; q1, t1) = ⟨q2|U(t2 − t1) |q1⟩ =
∫ q(t2)=q2

q(t1)=q1

D[q(s)] exp

{
i

ℏ
S[q]

}
, (4.3)

where S is the classical action

S[q] =

∫ t2

t1

dt
(m
2
q̇2 − V (q)

)
. (4.4)

Now what happens if we take the one-dimensional particles and we put it in a thermal
equilibrium with some bath? In this case, we cannot say for sure what the state of the
particle is – it is completely mixed with the thermal bath. However, we can describe its
properties in a statistical sense. In other words, the particle is in a thermal state and
described by a density matrix,

ρ =
1

Z
exp{−βH}, β =

1

kBT
, kB − Boltzmann constant. (4.5)

This state is known as the Gibbs state, and Z is the partition function,

Z = tr (exp{−βH}) (4.6)

chosen in such a way so as to have trρ = 1. We see that there is a factor of exp{−βH},
which looks very much like the evolution operator, with a funny, imaginary time9. We can
replace

exp{−βH} = U(−iτ), (4.8)
9In order to keep the spectrum of the Hamiltonian bounded, one needs to have Im t < 0. One can show

this through the energy representation of the evolution operator,

U(t) =
∑
n

exp

{
t

iℏ
En

}
|n⟩ ⟨n| , (4.7)

where H |n⟩ = En |n⟩. We see that the sum converges only when Im t < 0.
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where
τ

ℏ
= β =

1

kBT
. (4.9)

In some sense, one can view a quantum system in thermal equilibrium as a quantum system
in imaginary time. And of course, we can now define the Euclidean path integral since we
have Euclidean time evolution,

U(−iτ) ≡ UE(τ). (4.10)

The transition amplitude is simply given by

K(q2, τ2; q1, τ1) = ⟨q2|UE(τ2 − τ1) |q1⟩ =
∫ q2=q(τ2)

q1=q(τ1)
D[q[σ]] exp

{
−1

ℏ
SE [q]

}
, (4.11)

where SE is the real and positive Euclidean action,

SE [q] =

∫
dσ

(m
2
q̇2 + V (q)

)
, (4.12)

and it is equal to the standard action with an imaginary factor, iS[q] = −SE [q]. We see
that there are no more oscillations, but now we have a minimal trajectory, with others
suppressed. In other words, we associate a Boltzmann factor to each trajectory q[σ] and
compute the average over a statistical system, where the statistics is over all the trajectories.

To see that Z is now really a partition function, let us write it out in some basis,

Z = tr (UE(βℏ)) =
∑
n

⟨n|UE(βℏ) |n⟩ =
∑
n

exp{−βEn}. (4.13)

Using the decomposition of unity,

1 =
∑
n

|n⟩ ⟨n| =
∫
dq |q⟩ ⟨q| , (4.14)

we can rewrite (4.13) as

Z =

∫
dq ⟨q|UE(βℏ) |q⟩ , (4.15)

where now this integral is over all position eigenstates q, and equal to

Z =

∫
Dq[σ] exp

{
−1

ℏ
SE [q]

}
. (4.16)

This is the path integral representation of the partition function at finite temperature.
Notice that the trace imposes that q1 = q2 = q; in other words, it imposes a periodicity on
the initial and final trajectories, q(βℏ) = q(0), with periodicity

τβ = βℏ =
ℏ

kBT
. (4.17)

Finally, let us just note why we called this the Euclidean method. Recall the Minkowski
metric,

ds2 = −dt2 +
∑
i

dx2i . (4.18)
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If we now replace t −→ −iτβ , we get

ds2E = dτ2β +
∑
i

dx2i , (4.19)

which now has the Euclidean signature (++++). Notice that we can do the same trick in
Rindler space,

ds2 = −ρ2κ2dt2 + dρ2 (4.20)

to obtain
ds2E = ρ2κ2dτ2β + dρ2 = ρ2d(κτ = θ)2 + dρ2 (4.21)

where now the time is periodic with a specific period,

θ ∼ θ + 2π. (4.22)

One has to have a period of 2π since otherwise we would not have a regular metric at ρ = 0;
we would get a conical singularity if the period is less than 2π and conical excess if it is
bigger than 2π. This imposes a constraint on κ

κτβ = 2π −→ κ =
2π

τβ
=

2π

βℏ
. (4.23)

This is exactly the constraint we obtained by thinking about surface gravity! This simple
example indicates that something like this Euclidean method should make sense in gravity
as well.

Euclidean gravitational path integral

In ordinary quantum field theory, in order to do a path integral we first fix the spacetime
manifold M, and then integrate over fields defined on M. In quantum gravity however, we
have to integrate over the geometry as well,

Z =

∫
DgDϕ exp{−SE [g, ϕ]}, (4.24)

where now

SE [g, ϕ] = − 1

16π

∫
√
g(R+ . . . ) + boundary terms + Smatter[ϕ] (4.25)

We have put (for now) ℏ = G = 1. But what are these boundary terms? Note that the
gravitational action has an integrand that schematically is like R ∼ g−1∂2g, which is a little
bit unusual: if we think about a classical toy model for this, it would have the action as

S ∼ −1

2

∫
dt qq̈, (4.26)

which differs from the usual action form by a boundary term,

S̄ =
1

2

∫
dt q̇2 = −1

2

∫
d (qq̇)− 1

2

∫
dt qq̈. (4.27)
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So, we see that if we want to obtain a Hamiltonian contribution, we should add a boundary
term to our gravitational action, which we would expect to involve first derivatives of the
metric. A term like that is called the extrinsic scalar and it is obtained from the extrinsic
curvature Kµν through

K = hµνKµν , Kµν =
1

2
Lnhµν , (4.28)

where hµν is the induced metric on the boundary ∂M, Ln is the Lie derivative along the
unit normal nµ,

Lnhµν = nα∂αhµν + (∂µn
α)hαν + (∂νn

α)hµα, nµ = ± ∇µF√
gαβ∇αF∇βF

, (4.29)

where F (x) is a level function that defines the hypersurface. For instance, if we take a
constant r hypersurface, we will have F = r − const. The ± signs depend on whether one
is taking a timelike or a spacelike hypersurface. For timelike ones, we have a minus sign.
Notice that K has exactly the form that we need,

K ∼ h−1∂h. (4.30)

One can find the induced metric by computing

hµν = gµν − nµnν . (4.31)

In order to compute the thermal partition function, we now know what to do: a path
integral on a Euclidean manifold with boundary conditions such that Euclidean time is a
circle of proper size β,

τβ ∼ τβ + β. (4.32)

We impose this boundary condition asymptotically, where the field falls off rapidly enough,
so as gττ −→ 1. In order to actually evaluate this partition function, we will expand around
its classical saddle (this is the WKB expansion),

Z(β) ∼ exp
{
−SE [ḡ, ϕ̄]

}
+ . . . , (4.33)

where the barred quantities now correspond to classical solutions to the equations of motion,
and the dots are higher order quantum corrections. For instance, calculating the first-
order correction is what Hawking basically did to get the Hawking radiation. We will
now evaluate this classical contribution for a Schwarzschild black hole, but first note that
from this partition function, we can use the usual thermodynamic relations to compute the
entropy and the energy of the system,

S = (1− β∂β) logZ, (4.34)

E = −∂β logZ. (4.35)
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The Schwarzschild solution

Let us set ourselves now in the Euclidean Schwarzschild solution, which satisfies the aforementioned
boundary conditions,

ds2 =

(
1− 2M

r

)
dτ2 +

dr2

1− 2M
r

+ r2dΩ2, (4.36)

where τ ∼ τ + β. Notice that this solution is now completely smooth and devoid of
singularities – the τ -metric component is not allowed to switch signs as in the Lorentzian
case, since r = 2M now constitutes the origin of coordinates. In other words, unlike in
the Lorentzian geometry, now it is not possible to cross to r < 2M . The spheres are still
shrinking, so the full geometry looks like a stretched-out bowl in the horizontal direction.
People usually refer to this solution as the Euclidean cigar.

Let us now evaluate the action. The Einstein-Hilbert term that is ∼ R will be equal to
zero since Schwarzschild is a vacuum solution (there are no matter fields ϕ). So, the only
term we need to evaluate is the boundary term. One can see easily by using (4.29) that∫

∂M

√
hK = 4πβ(2r0 − 3M), (4.37)

where F = r − r0 = r − const. We see that this integral will diverge as we take r0 −→ ∞,
which is where the boundary is, so we need to regulate it and subtract the divergence in
a suitable way. The method we will use is called vacuum subtraction, although it is not
the most general method. More generally one uses counterterms that can be systematically
obtained in some cases but we will not cover this here.

The “vacuum” in this case is simply Minkowski, since it is the only other solution which
satisfies the boundary conditions of fixed periodic time. Adding this new contribution will
make

SE [g] = − 1

16π

∫
M

√
gR− 1

8π

∫
∂M

√
hK +

1

8π

∫
∂M

√
hK0, (4.38)

where K0 is associated to the Minkowski subtraction10. We will see that subtracting this
Minkowski piece will change the finite part, besides cancelling out the singular part. To
compute the Minkowski part, we will rewrite the flat induced metric in some convenient
way: the boundary metrics of the spacetime and the background must match (they must
be contributions to a path integral with the same boundary metric), and so

ds2 =

(
1− 2M

r0

)
dτ2 + r20dΩ

2. (4.39)

One can check that this truly is flat – the metric coefficients are constants and they can be
reabsorbed into the coordinates. With this metric, one obtains∫

∂M

√
hK0 = 8πβ(r0 −M +O

(
r−1
0

)
). (4.40)

10In principle one should also add a bulk term R0. But for the case at hand we can remove all bulk terms
in this equation and only keep the boundary term.
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Putting everything together, we obtain for the Euclidean action

SE =
βM

2
, where β = 8πM. (4.41)

Thus the thermal partition function, or leading approximation to the path integral, is

Z(β) ∼ exp
{
−4πM2

}
= exp

{
− β2

16π

}
, (4.42)

from which we can compute (and reassure ourselves) that

S = (1− β∂β) logZ = 4πM2, (4.43)

E = −∂β logZ =M. (4.44)

Given that the area of the black hole is A = 4πr2h = 16πM2, we see that the entropy
matches the expected area formula, and of course, the energy is simply given by the mass.

Exercise: Fill in the gaps in this subsection and verify the main results.

5 Evaporation of a black hole

We saw that black holes are characterized by the same parameters as any other thermal
system, with their entropy and temperature defined through certain geometric quantities.
We also saw that once quantum mechanics is incorporated, they behave as thermal systems
since they can radiate a black-body spectrum. But each quanta that is emitted shrinks the
black hole by a bit, and therefore, shrinks its area and the mass. How is this compatible
with the second law now, where we said that the area must never decrease?

This ’puzzle’ is resolved once we realize that the black hole in this case is not an
isolated system – it is losing its entropy through radiation, but this should be compensated
by the growing entropy of the radiated quantum fields. Indeed, this is how we came to the
realization that black holes must have entropy. Bekenstein proposed that one should apply
the generalized second law to the whole system11 which now has generalized entropy,

Sgen =
AH

4Gℏ
+ Srad, (5.1)

where Srad is the entropy of quantum fields that are being radiated away. The generalized
second law then simply states that

∆Sgen ≥ 0. (5.2)

One could still be worried that the change in the area will be greater than the change in
the entropy of the matter outside. However, a calculation done by Don Page reassured the
world that the change in the matter entropy will always be greater than the area decrease
[3]. One can try to argue for massless radiation that

∆Srad ≃ 4

3
|∆SBH|. (5.3)

11This is really just the usual second law where a bath has been included.
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We can see that the entropy produced is of the same order as the entropy of the black
hole. The reason is that the evaporation produces a number of photons N ∼ SBH. The
factor 4/3 comes from the relation srad = 4

3ϵradT between the entropy and energy density
of massless radiation (PV = p = 1/3ϵrad and ϵrad = Tsrad + p) at temperature T (in D
spacetime dimensions srad = D

D−1ϵradT ).

Life(time) of a black hole

Radiating away quantum fields also shrinks the mass of the black hole, so we expect that
the black hole will fully evaporate away at some point. Let us compute how long would it
take a Schwarzschild black hole to evaporate.

The area of a Schwarzschild black hole is given by A = 4πr2 = 16πG2M2 as we saw in
the previous section. Now, the radiating power P is related to the black hole area and its
temperature – for this, we use the Stefan-Boltzman law since we can treat the black hole
radiation as black body radiation, and so

P = eσAT 4, (5.4)

where e is the emissivity of an object and we set it to 1 for an ideal radiator, and σ is the
Stefan-Boltzman constant, which depends on the specific (massless) fields that are being
radiated. Replacing all the known variables, we get

P =
σℏ4c8

256π3G2k4BM
2
≡ K

M2
, (5.5)

where K consists of all the constants in the equation. Now, given that the power of the
Hawking radiation is the rate of energy loss of the black hole, we can write

P =
dE

dt
= −dM

dt
, (5.6)

since dE = −dM . Equating the above expressions, we get a differential equation for the
mass loss of the black hole

− dM

dt
=

K

M2
−→ M2dM = −Kdt. (5.7)

Integrating over M ′ from M to zero, and t from zero to τev, we get

τev ∝M3, (5.8)

where τev is the evaporation time. We see that the black hole evaporates in a finite time.
This calculation is of course very rough since it neglects the backreaction effect that the
emission of radiation and loss of mass have on the black hole geometry and on the radiation
process itself. These effects should be small when the energy of emitted quanta is much
smaller than the mass of the black hole,

TH << M, (5.9)
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that is, for M >> Mp, where Mp is the Planck mass. Therefore, for most of the black hole
lifetime the approximation is good, and its mass will reach Planck size in a time ∝M3 .

During this evaporation process, one can ask what kind of particles will we get out?
The wavelength of a single Hawking quanta is given by

λH =
ℏ
TH

∼ GM, (5.10)

which is comparable to the Schwarzschild radius of the black hole (it had to be, since this
is the only scale in the system). Including numerical factors, one in fact finds λH ≳ rh.
Given that the size of the black hole is comparable to or smaller than the wavelength of the
radiation, Hawking radiation cannot be traced to any point on the horizon – the image one
forms of a black hole from its Hawking quanta is a blurred one. This is unlike for the Sun
whose size ∼ 109 m is much larger than the wavelength of the radiation it emits ∼ 102−103

nm, and so, we can use it to get a detailed image of the Sun.
As for what kind of particles we can get, the black hole will produce any particle that

is permitted by local conservation laws, with mass possibly all the way up to the Planck
energy. Initially, the black hole will radiate mostly photons, gravitons, and then neutrinos,
and as it reaches different mass thresholds, all other particles will be produced: electrons
and positrons around TH ∼ 1 MeV, mesons at TH ∼ O(100) MeV, nucleons at TH ∼ 1 GeV,
Higgs bosons at TH ∼ 126 GeV, then X? at ???eV etc. However, given the long evaporation
time, the black hole spends most of its lifetime, and releases most of its energy, emitting
low-energy quanta in copious quantities. We can see that if we restore the units for the
Hawking temperature

TH =
ℏc3

8πkBGM
= 6× 10−8M⊙

M
K, (5.11)

so for a solar-mass black hole, TH ∼ 10−7 K. This is much colder than the temperature of
the CMB for instance, TCMB ∼ 3 K. The smallness of the effect should not be surprising: it
is a quantum effect and therefore one expects it to be small for macroscopic objects (and for
a black hole, macroscopic means larger than the Planck scale). So, by the time it reaches
the threshold to produce more interesting massive stuff, little energy is left and few of these
particles are produced.

On the other hand, the entropy of astrophysical black holes is huge:

SBH =
c3

ℏG
AH

4
∼ 1076

(
M

M⊙

)2

. (5.12)

A single galactic black hole, with M ∼ 106 − 109M⊙, has more entropy than all the matter
and radiation in the universe (SCMB ∼ Nphotons ∼ volume of universe in mm3 ∼ 1087).

Can we say something about black holes that are finishing their evaporation today?
The initial mass of a black hole that started evaporating in the early universe and ends
its evaporation today, so τev ∼ 1010 yr, is M ∼ 1015 g. Black holes with these masses are
necessarily primordial, that is, formed by density fluctuations in the early universe, since
astrophysical collapse cannot yield black holes with masses much below a solar mass.
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Information in black holes

What can we know about a black hole from the outside? We already saw that some
parameters play a role in the laws of thermodynamics, like the mass, charge and spin.
In fact, it turns out these are the only parameters that we can measure (classically) as
asymptotic observers. This is not only true for spherically symmetric black holes, where
a few parameters might do the job for standard systems; these parameters are the only
ones even for highly non-symmetric black holes. This statement is best known as the “no-
hair conjecture”, posed by John Wheeler12 in the 1950s as an indicator that black holes
are determined by only a handful of parameters. These are usually said to be conserved
charges at infinity, although one can find examples, for instance in higher dimensions, where
non-trivial field configurations still exist. Nevertheless, the spirit of the no-hair statement
is preserved – only a few parameters determining a black hole are available to asymptotic
observers. In effect, the no-hair statement tells us the black hole tends to quickly settle
down to a state where the region around the horizon is vacuum.

Therefore, when a system collapses to form a black hole, it appears that almost all of
the initial information of the configuration of collapsing matter is lost in the process. The
final state only knows about a few aggregate, macroscopic quantities. Classically, there
is no way that this information can be retrieved. What about retrieving the information
through quantum effects? After all, we saw that Hawking radiation exists – shouldn’t all
of the information be encoded in such quanta? It has to, otherwise our black hole will
evaporate and all of that information will be lost forever. Right? Although, the spectrum
of the radiation is thermal, so all of the information we can receive is similarly macroscopic
in nature. Thermal spectrum basically says our radiation is so scrambled, we can only
deduce the total mass of the black hole, and maybe some conserved charges conjugate to
‘chemical potentials’ such as angular velocities, electric potentials etc. In other words, we
get a mixed state at asymptotic infinity. What’s going on then?

Entanglement entropy

The discussion above was realized by Hawking immediately after his paper on particle
production in black hole spacetimes. To understand the paradox more precisely, we need
to introduce some terms, specifically types of quantum states and how we can distinguish
them. There are two types of states in quantum mechanics: pure and mixed. Pure states
can be represented by a state vector, while mixed states cannot and they arise for two
different reasons. First, when the preparation of the system is not fully known, and thus
one must deal with a statistical ensemble of possible preparations, and second when one
deals with partitions of the system, which result in entangled states (but one can have pure
entangled states as well). If you think about a Bell pair,

|Ψ⟩ = 1√
2
(|0⟩A |0⟩B + |1⟩A |1B⟩) , (5.13)

12He actually coined many cool terms we still use today – like a black hole!
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this is a pure, yet an entangled state of the Hilbert space H = HA ⊗ HB. Mixed states
consist of an ensemble of pure states ψn, each with a probability of occurrence pn,

ρ =
∑
n

pn |ψn⟩ ⟨ψn| . (5.14)

If pn = 1, we obtain back a pure state, that is, pn = 1 means that we know with a 100%
probability that we are in the state ψn. Otherwise, we can only say that we have p1 = 30%

probability of being in ψ1 and p2 = 16% probability of being in ψ2, and so on (until∑
n pn = 1). In other words, mixed states carry a certain degree of uncertainty, ignorance

about our state.
Another way to see that mixed states carry a degree of ignorance is by explicitly “tracing

out” some part of our pure state – the resulting state will be mixed. Consider a quantum
system composed of subsystems A and B, fully described by the density matrix ρAB. The
reduced density matrix of subsystem A is then given by a partial trace over the system B,

trB ρAB = ρA. (5.15)

For instance, let us take the Bell state in (5.13), and trace over the system B

ρA = trB |ψ⟩ ⟨ψ| =
1∑

i=0

B ⟨i|ψ⟩ ⟨ψ|i⟩B =
1

2
(|0⟩ ⟨0|A + |1⟩ ⟨1|A) . (5.16)

We see that we obtained a mixed state after tracing out. Note that tracing out does not
constitute a physical evolution of a system – it is a mathematical way of expressing our
ignorance about a subsystem. Now, in quantum mechanics, it is forbidden to evolve a pure
state to a mixed state. This would be tantamount to losing information, which cannot
happen if our evolution is unitary – in other words, probabilities must add up to 1. So, if I
start with a pure state, I must end up in a pure state. But how can we tell?

The inherent ignorance in our mixed states inspired a notion of entropy with which
we can tell the difference between pure and mixed states. The entropy in question is
entanglement entropy, also known as von Neumann entropy. Note that this entropy is not
the same as the coarse-grained entropy talked about in the introduction. This von Neumann
entropy is fine-grained since it encompasses knowledge about our microscopic system. That
is, it quantifies our ignorance about the precise quantum state of the system. It vanishes
for a pure state, indicating complete knowledge of the quantum state. However, for mixed
states, it gives a non-zero value since we do not know everything about our system. Take,
for instance, the density matrix (5.16); it is easy to show that the von Neumann entropy
will be ln 2 in that case.

On the other hand, when calculating coarse-grained entropy, we fix only some macroscopic
data, like the energy or the temperature, and we stay ignorant about the underlying
microscopic details. To be more precise, we start with some density matrix ρ describing
the system, but we do not measure all observables, we only measure a subset of simple, or
coarse-grained observables Ai. Then we obtain the coarse-grained entropy in a few steps:
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first, we consider all possible density matrices ρ̄ which give the same result as our system
for the observables that we are keeping fixed,

trρAi = trρ̄Ai. (5.17)

We then compute the von Neumann entropy S[ρ̄], and maximize it over all possible choices
of ρ̄. The Ai are often chosen to be a few observables, say the approximate energy and the
volume. The thermodynamic entropy is obtained by maximizing the von Neumann entropy
among all states with that approximate energy and volume.

Let us show that the (fine-grained) von Neumann entropy does not increase with time13.
The only thing we will assume is that our evolution is unitary, that is

ρ(t) = U(t)ρ0U
†(t), (5.18)

where U(t) = e−iHt with H the Hamiltonian of our system, and UU † = 1. The von
Neumann entropy is given by

SvN = −trρ log ρ, (5.19)

where ρ is the density matrix associated with our system. In the case we have a pure
state |ψ⟩, the density matrix can be written as ρ = |ψ⟩ ⟨ψ| and one can show that the von
Neumann entropy is zero. Note also that the density matrix is simply a list of probabilities,
and so trρ = 1, which is simply to say that probabilities are preserved.

Let us evolve our density matrix,

dρ

dt
= iHρ(t)− iρ(t)H = −i[ρ(t), H]. (5.20)

This equation is simply the Ehrenfest theorem, where the initial density matrix does not
depend on time. Now we can evolve our entropy,

dS

dt
= −tr

(
−i[ρ,H] ln ρ+ ρρ−1dρ

dt

)
, (5.21)

and notice that the trace can go beyond the derivative (it is just a sum after all), so
tr dρdt = d

dt(trρ) = 0, and

dS

dt
= itr ([ρ,H] ln ρ) = itr (ρH ln ρ− ρ ln ρH) , (5.22)

where in the last line we used the cyclicity of the trace to move the Hamiltonian to the
right. Now we see

dS

dt
= itr (ρ[H, ln ρ]) = −tr

(
ρρ−1dρ

dt

)
= 0, (5.23)

since we can use the same argument as before. Therefore, von Neumann entropy is preserved
under time evolution. Note that this is not in contradiction with the second law since the
entropy still does not decrease – it also just does not increase. This is because we have not

13One can show that the second law holds for thermal states using a notion of relative entropy; a quantum-
information oriented perspective on this is given here.
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done any coarse-graining in our system and all the knowledge is preserved in the density
matrix.
Exercise: Fill in the gaps in the calculations above and calculate the fine-grained von
Neumann entropy of (5.16).

The beginning of a paradox

Recall how entanglement arises physically: the entangled particles must come from the same
source or have some sort of an interaction in order for them to be entangled. And now we
see why we went through the trouble of defining entanglement entropies and so forth – pair
production is a process that involves a same source for the particles, that is, the vacuum.
So, when we derived the Hawking radiation as pair production, we see that those pairs are
actually entangled (and one can show this rigorously through a proper calculation).

Knowing that we now have entangled particles to deal with, we can use the methods
described above to tackle the problem of black hole evaporation. We will start by identifying
that we are dealing with subsystems – black hole A and the radiation B. If this process
was unitary, then we could have a description as shown in Fig. 1. The global initial state
was pure, and it evolved into another globally pure state. A way of representing that the
evolution was unitary is through a plot of the von Neumann entropy for both subsystems,
as shown in Fig. 2. Plotting the unitary entropy evolution against time is known as the
Page curve, and it was first discussed by Don Page. The Page curve tells us how the entropy
of subsystems must evolve if the evolution of the entire system is unitary.

Now, let us take a black hole that was formed by a shell of matter in some pure state.
As time goes on, the quantum state of the radiation field outside becomes more and more
mixed, which we can quantify by saying that its entanglement entropy is increasing. This
may not seem so bad at first, since after all in looking at the late radiation we are looking
just at the part of the state which is outside of the black hole horizon. Eventually, the
entanglement entropy of the radiation is bigger than the area of the black hole – this is the
moment when the paradox emerges. We saw that in the unitary model described in Fig. 1,
the entanglement entropies always have to be the same during the evolution – it is basically
telling us that the purification of modes always exists. If one entropy becomes larger than
the other, this indicates that there are some modes which cannot be purified anymore; they
do not have their partner in other words. The moment this happens is called the Page time,
and it is roughly around the time when the black hole has evaporated ∼ half of its mass.
As the black hole evaporates further, it decreases in size until at some point it becomes
Planckian, and the entanglement entropy of the radiation field outside still continues to
increase. This is how we get the evolution of a pure state to a mixed state.

Proposals for a resolution

Clearly, there is something wrong with the picture we were using (and the much more
sophisticated picture that people actually calculated for; we simply presented a toy argument).
However, the “beauty” of the paradox lies in apparent innocuous assumptions made throughout
Hawking’s calculation. Hawking assumed three things in total:
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Figure 1: Unitary evolution of radiation transfer.

Figure 2: The Page curve.

1. The black hole entropy is given by its area measured in Planck units;

2. The equivalence principle should hold for large black holes, where large = not Planckian;
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that is, freely falling observers (and fields) experience the horizon as a smooth place,
locally indistinguishable from Minkowski space;

3. Quantum physics is valid, even if black holes are involved.

Listing the assumptions in this way, it is difficult to say which one of these should be
dropped. This is the main reason why this calculation has been bothering (and exciting)
physicists for over 50 years now. And throughout these 50 years, many possible resolutions
have been proposed. We will not go through the details of proposed resolutions in these
lecture notes; for this, I highly recommend reading [4] and consulting other references
within. We will simply outline three possible directions14.

Remnants. One popular idea at the time was that maybe the black hole never evaporates
fully, but leaves behind a Planckian-sized remnant. Suffice to say that this possibility has
been ruled out by now on many grounds, but the simplest one is to see that the problem
already begins around the Page time – what happens after it does not matter if the ever-
growing entropy is not controlled by that time. Another reason why they are ruled out is
due to the fact that, as stable objects of arbitrary amount of information, they would have
an enormous amount of entanglement entropy, but their size would be only Planckian. This
clearly violates the entropy bound discussed in the introduction.

Corrections due to backreaction. Another popular idea was thinking that Hawking
simply did not take into account the backreaction of the metric on the modes: as more
radiation comes out, the more effect they have gravitationally, so maybe that can help
change the outcome of the calculation. Corrections really do exist and they bring small
deviations from the exactly thermal spectrum. However, the entanglement between the
interior and the exterior of the black hole grows monotonically along the evaporation.
If backreaction results in a small modification in the individual emission process, the
entanglement will still keep growing, only now at a slightly lower rate. So it does not
seem possible that backreaction, which must be small for large black holes, can effect the
reversal in the growth of the entanglement at mid-evaporation that is required to maintain
unitarity of the entire process. In fact, this was proven by Samir Mathur in 2009 in [5].
This way, the paradox has been made into a rigorous theorem, (using something called
“strong subadditivity of entanglement entropy”), so that it is stable against all subleading
corrections. In other words, to overcome the large deviation from the unitary Page curve,
one would need large corrections to the calculation.

Fuzzballs, firewalls, brick walls and other -alls. A very popular idea is to simply
replace the black hole with something would-be more fundamental, or in other words,
something that does not allow for a smooth horizon to form. Although different in their
origin and their purpose, all of these proposals suffer from one main issue: what prevents a
black hole from forming? By all means of low-curvature, classically valid General Relativity,
a black hole is the most natural end-state of a collapse of a massive star. Quantum effects
coming into play at such large and arbitrary scales seems very unusual – but of course, the

14There are many.
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whole paradox is quite unusual. Overall, the hope is that this paradox will shed light on
new physics that we have been all waiting for. And in a way, it did.

Holographic theory of gravity

The black hole information problem stirred up a lot of research throughout its fruitful
life. Given that all the proposed resolutions require some deviation from our standard
assumptions about gravity and quantum physics, it was clear that, whatever the resolution
turned out to be correct, it will lead us down the path to a theory of quantum gravity.

But the biggest hint that our standard understanding was incomplete, to say the least,
came before all the proposed resolutions. Namely, the biggest hint came already from
Bekenstein’s insight on the nature of the black hole entropy. Specifically, its scaling with
size.

Recall how entropy behaves in standard thermodynamic systems. The change in the
entropy is given by the change in the energy, multiplied by a factor of temperature. Now,
the temperature is an intensive quantity: it reflects the average speed of molecules in our
system, but it does not depend on the total amount of molecules. On the other hand,
the energy is an extensive quantity – adding more molecules means adding more energy to
the system since each molecule carries energy with it. Entropy is therefore, an extensive
quantity as well: it simply counts the number of degrees of freedom of the molecules,
roughly. As we see, extensive quantities are those that depend on the “amount of stuff” we
have. Adding more degrees of freedom means I have to rearrange them somehow, and for
standard thermodynamic systems this means that each degree of freedom occupies a box
of a certain volume in phase space. In other words, the more volume we have, the bigger
extensive quantities are.

But the scaling of the black hole entropy is different: the entropy scales with the area
of the black hole, not the volume. In fact, we do not know of any thermodynamic systems
that behave this way – they all obey the volume law. If the entropy scales with the area,
that means we have to seriously rethink the way these degrees of freedom are arranged.
This also implies that we have far less degrees of freedom than we initially thought, and
that their distribution must be somehow highly non-local.

This observation led Gerard ’t Hooft to argue that the true space of quantum states
in a finite region must be finite dimensional and associated with the lower-dimensional
boundary of the region rather than the volume. He made an analogue with the way a
hologram would work – hence the holographic theory of gravity. A hologram, recall, manages
to reconstruct a three-dimensional object by using only a two-dimensional representation.
That is, a lower-dimensional object has all the information necessary to reconstruct an
object of one dimension more, but that information is distributed in a highly non-local
way. This holographic point of view was then developed further and understood within the
framework of string theory by Leonard Susskind.

There is one more observation we can make [6]: even though we do not know of any
thermodynamic systems that have their entropies scaling with the area, we know that
entanglement entropies can exhibit this behaviour. Take for instance, a snapshot in time
of some quantum fields evolving on some background, for example, in Minkowski space.
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Imagine that we draw an imaginary surface of area A in this background, and now we want
to calculate the entanglement entropy associated with the fields within the surface, and
those outside of it. Now we can ask a question: how will the entropies scale? First thing to
note is that the information must be preserved – just like with Hawking radiation, whatever
is inside the surface must purify the stuff outside; in other words, it must carry the same
entanglement entropy. So, it is clear that the entropy cannot scale with the volume of the
surface, since then how can the entropy for the fields outside scale in the same way; simply
put, they have different volumes. The only thing these fields have in common is the area
of the surface, and so, the entropy must be proportional to that area.

Therefore, it seems that the coarse-grained entropy of a black hole might have an
interpretation of an entanglement entropy of some quantum fields across a surface of the
same area as the black hole. The answer to what quantum fields and in what way are
they holographically related to the black hole, was provided by Juan Maldacena when he
discovered what is now known as the AdS/CFT correspondence. Here AdS stands for Anti-
de Sitter spacetime, and CFT is a conformal field theory, which is a special type of a field
theory with no intrinsic scale. In a nutshell, the correspondence tells us that gravity in d

dimensions is equivalent to strongly-coupled quantum field theory in d − 1 dimensions15.
This correspondence encodes in a precise way the holographic ideas of ’t Hooft and Susskind,
and it gives us a completely new way of thinking about quantum gravity. Given that these
lectures must end at some point, I highly recommend reading [7] as a good first introduction
to the physics of AdS/CFT.

Here, let us briefly come back to the question of black hole information paradox – what
can we say about it given this new principle? Since gravity is now dual to a theory of
quantum fields, and such a theory is manifestly unitary, then that means that our gravity
theory must evolve in a unitary way as well! For instance, we now know how to obtain the
Page curve thanks to the insights that the boundary theory provided; a less-technical review
of this progress can be found in [8]. However, we still do not know how to implement that
unitarity, nor how to extract the physics of Hawking evaporation. In other words, there are
many exciting questions left to be answered – possibly by the future Petnica participants.

15Technically, it says that Type IIB superstring theory on AdS5× S5 is dual to N = 4 supersymmetric
Yang-Mills theory in 4 dimensions, but we do not need to get into these details here.

– 27 –

https://en.wikipedia.org/wiki/Juan_Maldacena


A Coarse-grained evolution

Coarse-grained entropy is the von Neumann entropy with fixed simple observables, like the
energy. In other words, we can measure the one-point functions, but maybe not higher-point
functions. When the energy is fixed, we are in the microcanonical ensemble.

Let us try and show the second law in the microcanonical ensemble – when coarse-
graining has been performed. We start with the von Neumann entropy and we work in a
basis where the density matrix diagonalizes,

ρ =
∑
n

λn |n⟩ ⟨n| , ln ρ =
∑
n

lnλn |n⟩ ⟨n| , (A.1)

where λn are now probabilities in this diagonalized matrix: probability that the system
could be found in the n-th state, and n are the eigenstates. An easy setup to show that the
entropy grows is when we are in the microcanonical ensemble – this will put a restriction
on n, that is, we will work in the energy eigenbasis, and it will also put a restriction on
λn’s. In this basis (A.1), we have

S = −trρ ln ρ = −
∑
n,m

⟨n| ρ |m⟩ ⟨m| ln ρ |n⟩ = −
∑
n

λn lnλn. (A.2)

Let us now write the evolution of the entropy,

dS

dt
= −

∑
n

dλn
dt

lnλn, (A.3)

and we see there is no second term since the probabilities are conserved,
∑

n λn = 1 (this is
the same reasoning as in the quantum case). Now, to see the evolution of this probability
λn, we will need to make some constraints. First, because we want this evolution to
be compatible with equilibrium physics, we require that the evolution must halt if the
probabilities are the same: the entropy grows only until reaches equilibrium. Second,
this evolution should tend towards the equilibrium, so if λβ > λα, then dλα

dt must grow –
probability to reach an equilibrium state should be the desired one. With these assumptions
in mind, we can write

dλα
dt

=
∑
β

kαβ(λβ − λα), (A.4)

where the function in brackets could in principle be any odd-powered16 polynomial with
the same difference ∆λ = λβ − λα, but we will be satisfied with the linear derivation. One
can also view this as being close to the equilibrium so that one can expand the function
for small ∆λ. We can also write the evolution with reversed indices; one can show that the
coefficients kαβ must be the same due to unitarity,

dλβ
dt

=
∑
α

kαβ(λα − λβ). (A.5)

16It cannot be an even-powered function since one requires a change of the sign of the left hand side, that
is, we require our probabilities to evolve towards equilibrium.
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Now we can rewrite

∑
n

dλn
dt

lnλn =
1

2

∑
α

dλα
dt

lnλα +
∑
β

dλβ
dt

lnλβ

 (A.6)

and get for the entropy

dS

dt
=

∑
α,β

kαβ(λβ − λα)(lnλβ − lnλα). (A.7)

Since these two brackets always have the same sign (the log is a monotonic function), we
get that the entropy will always increase, unless λα = λβ in which case dS = 0.
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