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Overview of the lectures

* Lecture 1
* (Exo)planets
* Protoplanetary discs
* Protoplanetary discs as accretion discs
* Evolution of dust in protoplanetary discs

* Lecture 2

* Dust growth
Planetesimal formation
Formation of planet cores
Accretion of planet envelopes
How do (exo)planets form?



Recap of Lecture 1

* Planets around other stars are numerous and diverse

* Planets form in discs of gas and dust surrounding newly-born stars

* These protoplanetary discs last a few million years, and during that
time they accrete onto the star

* Protoplanetary discs are likely turbulent, which may or may not be
driving accretion onto the star

* Evolution of dust is driven by gas drag
* Dust grains settle vertically and migrate radially in the disc



Planet formation



Stages of planet formation

sub-pm-sized

dust grains cm-sized dust km-sized 1000 km-sized fully-grown

planet cores planets with
atmospheres
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Dust growth

e Collision velocities due to: Brownian motion, turbulence, difference in
settling & radial drift velocities

* Collision outcomes: sticking, bouncing, fragmentation

 Mathematically described by the coagulation equation
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Fragmentation limits growth beyond cm-sizes
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So how do cm-sized dust grains
grow into larger bodies?



Planetesimal formation

* When dust becomes dynamically important, under certain conditions...



Planetesimal formation

* When dust becomes dynamically important, under certain conditions...
e Streaming instabilities produce dust clumps
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Planetesimal formation

* When dust becomes dynamically important, under certain conditions...
e Streaming instabilities produce dust clumps
* Gravitational collapse if clumps dense enough
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Planetesimal formation

* There is evidence for the S| + Gl planetesimal formation in the Solar system.
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Formation of planet cores:
planetesimal-driven growth

* Once km-sized planetesimals are formed, things get easier

* Objects held together by gravity - material strength unimportant

* Mutual gravitational interactions become important



Formation of planet cores:
planetesimal-driven growth

* Size evolution and velocity evolution are coupled
* Collision cross-sections depend on velocities
* Velocity evolution depends on mass distribution
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Formation of planet cores:
pebble accretion

* Pebble accretion is assisted by gas drag, and under some conditions
more mass can be accreted through accretion of pebbles than
through accretion of planetesimals.

Lambrechts & Johansen (2012)



Accretion of gaseous envelopes

 Solid planet cores accrete gas
from the protoplanetary disc,
while continuing to accrete
planetesimals and pebbles

* Hydrostatic growth
* Runaway growth

e Accretion ends when
surrounding gas disperses




Planets move in discs

* and may also open gaps in the disc
* This is due to gravitational interaction between a planet and the disc



Stages of planet formation

sub-pm-sized
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So how did planets we observe
form?



Solar system

Credits: NASA/Ames Research Center/Wendy Stenzel
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Giant planets on wide orbits:
formation through gravitational instability

Rice et al. (2003)



Resources

* Philip J . Armitage, Astrophysics Of Planet Formation (textbook)

* Philip J. Armitage, Lecture notes on the formation and early evolution
of planetary systems (available on arxiv)

* Philip J. Armitage, Physical Processes in Protoplanetary Disks
(available on arxiv)

e Juhan Frank, Andrew King, Derek Raine, Accretion Power in
Astrophysics (textbook)



End of Lecture 2



