Exercises 3

August 2024

1 Holographic 4-pt functions: how to succeed
without really trying

Consider an interacting scalar quadruplet ¢; (i = 1,2,3,4) of masses m; and
confomal dimensions A; in Fuclidean AdSpyi. Starting from the GPKW pre-

scription, try to write down the expression for 4-pt functions exploiting the
isometries of AdSp+1 to avoid explicit calculation of Witten diagrams.

1.1 Definition of the amplitudes

We work in the Euclidean metric

1
ds* = 2 (dzg + dz*), z = (20,2) = (20, 21, ... 2D). (1)
0

The bulk-to-bulk propagator G a is defined to obey the wave equation
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In AdSp41, this turns out to be solved by
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Ga(6) ~E %2R, (A,A—2+2,2A—D+1;£2>. (3)

We will assume that both A, A; > %. The bulk-to-boundary propagator from
a bulk point (z,2z) to a boundary point (0,z’) is given by

A
dsteond) = (i m) w

According to GPKW formula, in order to compute a 4-pt function we need
to compute the Witten diagram from Fig. Explicitly, the amplitude reads
(i=1,2,3,4):
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Figure 1: Witten diagram associated to an AdS four-point function

with
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Ay(wxix) = [ ©pGal€)0a, (u.x)Ga, (). (6)
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1. Write the functions A3, G and G that appear in and @ next to the
corresponding lines/points in the Witten diagram.

is a hard integral to explicitly perform. The neat trick proposed in [1] is to
exploit the fact that AdS isometries become conformal isometries in dual CFT.
We will use it to kill the integration in @ coming from the Witten diagrams.
We cannot kill the integral in but doing one instead of two is still a big
advantage.

1.2 Properties of the inversion

The integral @ can be simplified significantly by performing the inversion trans-
formation on the coordinates:
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Let’s see how the fields and the integration measure transform under .

2. Show that -
Ga(Z,x,x/) = QA(z,X,x’)\X’FA. (8)

1.3 Transforming the integral

Start by exploiting the translation invariance to move x; — 0, x5 — X31 =
X3 — X1. Apply then the inversion transformation to the integration variables
w,w and also to xg; (or if you want to be pedantic to the bulk point (0,x31)):

roor ooy [ Wu U X31
(0t xan) 1 (i) = (25, 2. 531, )



3. Show that the integral @ becomes
Ag(w,x1,%3) = |x31| 7?23 I(w' — a), (10)
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You can use the fact that
dD+1 z dD+1 P
=D+l — _D+1 - (12)
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Now we turn the crank. The integral I(w) is invariant to rescaling w +— Aw. This
is because the chord distance £ is scale-invariant, and that’s the only place where
w appears in I. The integral is invariant to all Poincaré transformations on the
boundary. This is because the geodesic distance £ is invariant under these, if we
transform z simultaneously. The module u? is unchanged by Poincare isometries
and ug does not see them at all.

4. Show that the geodesic distance £ is invariant under Poincaré transforma-
tions on the boundary. Explain why this means that I(w) is also invariant
under these transformations.

5. Show that under w, — A\w,,,

T(w) = A1 723 [ (w). (13)

6. Explain that this means that the function I(w) is constrained to be of the
form

2

I(w) = wde f (Zjé) = wdif (“’0) L A=A, - Ay (14)
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7. We want to solve for f(s), where we write s = 3. We can evaluate the
free part of the equation of motion on I(w) from (11)). Show that

(-9 m?) I(w) = w (“’)A . (15)
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8. Now show that (—V?2 + m?)I(w) is also equal to
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(16)

Now, equating and yields an inhomogeneous differential equation for
f- We can impose some boundary conditions, based on smoothness conditions
and asymptotics.



9. Explain why you expect f to be smooth as s — 1.

10. Show that when wy — 0, one should have I ~ wg. Also show that this
means that f should behave under this limit as

f(s = 0) ~ s(A7212)/2, (17)

11. Tt is convenient to look for f in a series representation, as f = >, apsPstt,

Substituting into the differential equation =, show that we get

a; =0, [>0
1
TNy (18)

Az +1-1)(A +1-1) b

a_1 =

a; = < —1.

12. Under what condition for A and A; does this sum terminate? This is
always satisfied for supersymmetric gauge theories.

Now that we have all this, we can insert the solution for I(w) into Aj from
— we didn’t do any integrations, just a few isometries and a recurrent algebraic
equation for the coefficients a;. We still need to do the integral in Ay.

13. Show that this becomes
+1y,

Ay = Zal\xls\ l/ D1 gA1+l(w X1)GA5+1(w,x3)GA, (W, %x2)GA, (W, X4).

(19)
This is a finite sum of single integrals, which is a lot easier to deal with
than the integral we started with!

2 3D Gravity through group theory

We will show in this exercise how we can understand AdS3 in terms of group
theory. Two ways of writing the AdSs metric are

ds® = —dX§ +dX37 +dX3 +dX3 20)
= — cosh? pdt? + dp? + sinh? pd?.
1. Start by showing that

g = e3(tH0)02gp0a05 (t=@)o

[ costcoshp+cos¢psinhp  sintcoshp — sin¢@sinhp (21)
~ \ —sintcoshp —singsinhp costcoshp — cos¢sinhp)’

Here o; are the Pauli matrices,
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2. Check that det g = 1. What group is parametrized by g?

3. Compute the object (hint: use Mathematica)

1 _
5 Tr((g~"dg))*. (23)
Observe that it is equal to the AdS3 metric!
Now we try to do the same for the BTZ black hole!

4. Now show that

g= ew036p016w03

(5 ) T6 )

Here r = cosh p. Show again that detg = 1.
5. Now compute the metric from here in terms of (¢, ¢,7) when ¢ = ¢ + ¢
and t = ¢ — 1. Show that it reduces to
2 2 2 dr? 2742
r2 —

We have seen that we can rephrase AdS3 gravity in terms of SL(2,R) group
theory!
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