
Exercises 3

August 2024

1 Holographic 4-pt functions: how to succeed
without really trying

Consider an interacting scalar quadruplet ϕi (i = 1, 2, 3, 4) of masses mi and
confomal dimensions ∆i in Euclidean AdSD+1. Starting from the GPKW pre-
scription, try to write down the expression for 4-pt functions exploiting the
isometries of AdSD+1 to avoid explicit calculation of Witten diagrams.

1.1 Definition of the amplitudes

We work in the Euclidean metric

ds2 =
1

z20

(
dz20 + dz2

)
, z = (z0, z) = (z0, z1, . . . zD). (1)

The bulk-to-bulk propagator G∆ is defined to obey the wave equation

(−∇2 +m2)G∆(ξ) =
δ(z − w)

√
g

, ξ =
(z − w)2

2z0w0
(2)

In AdSD+1, this turns out to be solved by

G∆(ξ) ∼ ξ−∆
2F1

(
∆,∆− D

2
+

1

2
, 2∆−D + 1;

1

ξ2

)
. (3)

We will assume that both ∆,∆i ≥ D
2 . The bulk-to-boundary propagator from

a bulk point (z, z) to a boundary point (0, z′) is given by

G∆(z0, z, z
′) =

(
z0

z20 + |z− z′|2

)∆

. (4)

According to GPKW formula, in order to compute a 4-pt function we need
to compute the Witten diagram from Fig. 1. Explicitly, the amplitude reads
(i = 1, 2, 3, 4):

A4(xi) =

∫
dD+1w

wD+1
0

A3 (w,x1,x3)G∆2(w,x2)G∆4(w,x4), (5)
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Figure 1: Witten diagram associated to an AdS four-point function

with

A3(w,x1,x3) =

∫
dD+1u

uD+1
0

G∆(ξ)G∆1(u,x1)G∆3(u,x3). (6)

1. Write the functions A3, G and G that appear in (5) and (6) next to the
corresponding lines/points in the Witten diagram.

(5) is a hard integral to explicitly perform. The neat trick proposed in [1] is to
exploit the fact that AdS isometries become conformal isometries in dual CFT.
We will use it to kill the integration in (6) coming from the Witten diagrams.
We cannot kill the integral in (5) but doing one instead of two is still a big
advantage.

1.2 Properties of the inversion

The integral (6) can be simplified significantly by performing the inversion trans-
formation on the coordinates:

xµ 7→ x̄µ ≡ xµ

x2
, (7)

Let’s see how the fields and the integration measure transform under (7).

2. Show that
G∆(z̄, x̄, x̄′) = G∆(z,x,x

′)|x′|2∆. (8)

1.3 Transforming the integral

Start by exploiting the translation invariance to move x1 → 0, x3 → x31 ≡
x3 − x1. Apply then the inversion transformation to the integration variables
w, u and also to x31 (or if you want to be pedantic to the bulk point (0,x31)):

(wµ, uµ,x31) 7→ (w′
µ, u

′
µ,x

′
31) =

(
wµ
w2

,
uµ
u2
,
x31

x213

)
. (9)
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3. Show that the integral (6) becomes

A3(w,x1,x3) = |x31|−2∆3I(w′ − x′31), (10)

where

I(w) =

∫
dD+1u

uD+1
0

G∆(ξ)u
∆1
0

(u0
u2

)∆3

. (11)

You can use the fact that

dD+1z̄

z̄0D+1
=
dD+1z

zD+1
0

. (12)

Now we turn the crank. The integral I(w) is invariant to rescaling w 7→ λw. This
is because the chord distance ξ is scale-invariant, and that’s the only place where
w appears in I. The integral is invariant to all Poincaré transformations on the
boundary. This is because the geodesic distance ξ is invariant under these, if we
transform z simultaneously. The module u2 is unchanged by Poincare isometries
and u0 does not see them at all.

4. Show that the geodesic distance ξ is invariant under Poincaré transforma-
tions on the boundary. Explain why this means that I(w) is also invariant
under these transformations.

5. Show that under wµ → λwµ,

I(λw) = λ∆1−∆3I(w). (13)

6. Explain that this means that the function I(w) is constrained to be of the
form

I(w) = w∆13
0 f

(
w2

0

w2

)
= w∆13

0 f

(
w2

0

w2
0 + |w|2

)
, ∆13 ≡ ∆1 −∆3. (14)

7. We want to solve for f(s), where we write s =
w2

0

w2 . We can evaluate the
free part of the equation of motion on I(w) from (11). Show that

(
−∇2 +m2

)
I(w) = w∆13

0

(
w2

0

w2

)∆3

. (15)

8. Now show that (−∇2 +m2)I(w) is also equal to

4w∆13
0 s2(s−1)f ′′+4sw∆13

0

[
(∆13 + 1)s−∆13 +

D

2
− 1

]
f ′+w∆13

0

[
∆13(D −∆13) +m2

]
f.

(16)

Now, equating (15) and (16) yields an inhomogeneous differential equation for
f . We can impose some boundary conditions, based on smoothness conditions
and asymptotics.
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9. Explain why you expect f to be smooth as s→ 1.

10. Show that when w0 → 0, one should have I ∼ w∆
0 . Also show that this

means that f should behave under this limit as

f(s→ 0) ∼ s(∆−∆13)/2. (17)

11. It is convenient to look for f in a series representation, as f =
∑
l als

∆3+l.
Substituting into the differential equation (15)=(16), show that we get

al = 0, l ≥ 0

a−1 =
1

4(∆1 − 1)(∆3 − 1)

al =

(
l + ∆1+∆3−∆

2

) (
l + ∆1+∆3+∆−D

2

)
(∆3 + l − 1)(∆1 + l − 1)

al+1, l < −1.

(18)

12. Under what condition for ∆ and ∆i does this sum terminate? This is
always satisfied for supersymmetric gauge theories.

Now that we have all this, we can insert the solution for I(w) into A3 from (10)
– we didn’t do any integrations, just a few isometries and a recurrent algebraic
equation for the coefficients al. We still need to do the integral in A4.

13. Show that this becomes

A4 =
∑
l

al|x13|2l
∫
dD+1w

wD+1
0

G∆1+l(w,x1)G∆3+l(w,x3)G∆2
(w,x2)G∆4

(w,x4).

(19)
This is a finite sum of single integrals, which is a lot easier to deal with
than the integral we started with!

2 3D Gravity through group theory

We will show in this exercise how we can understand AdS3 in terms of group
theory. Two ways of writing the AdS3 metric are

ds2 = −dX2
0 + dX2

1 + dX2
2 + dX2

3

= − cosh2 ρdt2 + dρ2 + sinh2 ρdϕ2.
(20)

1. Start by showing that

g = e
i
2 (t+ϕ)σ2eρσ3e

i
2 (t−ϕ)σ2

=

(
cos t cosh ρ+ cosϕ sinh ρ sin t cosh ρ− sinϕ sinh ρ
− sin t cosh ρ− sinϕ sinh ρ cos t cosh ρ− cosϕ sinh ρ

)
,

(21)

Here σi are the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (22)
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2. Check that det g = 1. What group is parametrized by g?

3. Compute the object (hint: use Mathematica)

1

2
Tr((g−1dg))2. (23)

Observe that it is equal to the AdS3 metric!

Now we try to do the same for the BTZ black hole!

4. Now show that

g = eφσ
3

eρσ
1

eψσ
3

=

(
eφ 0
0 e−φ

)(
r

√
r2 − 1√

r2 − 1 r

)(
eψ 0
0 e−ψ

)
.

(24)

Here r = cosh ρ. Show again that det g = 1.

5. Now compute the metric from here in terms of (t, ϕ, r) when ϕ = φ + ψ
and t = φ− ψ. Show that it reduces to

ds2 = −(r2 − 1)dt2 +
dr2

r2 − 1
+ r2dϕ2. (25)

We have seen that we can rephrase AdS3 gravity in terms of SL(2,R) group
theory!
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