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1 Exercise session 1

1.1 Black hole thermodynamics from Euclidean Quantum Gravity

1.1.1 Schwarzschild black hole thermodynamics

1. Fixing the length of the Euclidean time circle, we can relate β0 to β as∫ β

0

√
hττ = β

√
1− 2GM

Rb
≈ β

(
1− GM

Rb

)
=

∫ β0

0

√
h0ττ = β0. (1)

2. Now we want to compute

− 1

8πG

∫ √
hK. (2)

We can use
√
hK = nµ∂µ

√
h. We have

nµnµ = 1 = nrnrgrr −→ nr =
1

√
grr

=

√
1− 2GM

Rb
≈ 1− GM

Rb
. (3)

We will also use
√
h =

√
1− 2GM

r
r2 ≈ r2

(
1− GM

r

)
|r=Rb

. (4)

We can take a derivative with respect to r to find

∂r
√
h = 2Rb −GM. (5)

So we have, for the Schwarzschild spacetime (using
∫
dΩ2 = 4π),

− 1

8πG

∫ √
hK ≈ − 4πβ

8πG

(
1− GM

Rb

)
(2Rb −GM)

≈ − β

G
Rb

(
1− 3GM

2Rb

)
.

(6)

For the flat Minkowski metric, we can use the same result, replacing β → β0 and M → 0. So
for the flat spacetime:

− 1

8πG

∫ √
hK ≈ − β

G
Rb

(
1− GM

Rb

)
. (7)

Subtracting this, we find

IE [g
(cl)]− IE [g

0] =
βM

2
. (8)
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3. For the Schwarzschild black hole, we have β = 8πGM . So

βF =
β2

16πG
. (9)

Then

E = ∂ββF =
β

8πG
=M. (10)

We can also compute

S = (β∂β − 1)βF =
β2

16πG
. (11)

The area of a Schwarzschild black hole is 4πr2h = 4π(2GM)2 = 16πG2M2 = 16πG2 β2

(8πG)2 =
β2

4π . So we see that indeed, S = A
4G .

1.1.2 AdS black brane

The metric of the five-dimensional black brane is given by

ds2 =
r2

ℓ2

(
f(r)dτ2 +

3∑
i=1

dx2i

)
+
ℓ2

r2
dr2

r2
, f(r) = 1− r4H

4
. (12)

1. The temperature can be found by expanding near the horizon, and imposing that it locally
looks like flat space there. Writing r = rH + ξ, we obtain

f(r) ≈ 1− r4H
r4H + 4r3Hξ

≈ 4ξ

rH
. (13)

This yields the near-horizon metric

ds2 =
r2H
ℓ2

(
4ξ

rH
dτ2 +

3∑
i=1

dx2i

)
+
ℓ2

r2H

rHdξ
2

4ξ
. (14)

This is not in the form we want yet. In particular, we want a radial part ∼ dr̃2. So we impose

dr̃ =
ℓ

√
rH

1

2
√
ξ
dξ −→ r̃ =

ℓ
√
rH

√
ξ. (15)

Then the metric becomes
4r2H r̃

2

ℓ4
dτ2 +

r2H
ℓ2

3∑
i=1

dx2i + dr̃2. (16)

To avoid a conical singularity, we must thus impose

2rH/ℓ
2τ ∼ 2rH/ℓ

2τ + 2π −→ τ ∼ τ +
πℓ2

rH
(17)

so we read off

β =
πℓ2

rH
. (18)
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2. We first match the Euclidean time circles again:

β0 = β

√
1−

r4H
R4
b

≈ β

(
1− r4H

2R4
b

)
. (19)

Now the bulk term does not vanish. We have

Rµν = − 4

ℓ2
gµν −→ R = gµνRµν = − 4

ℓ2
gµµ = −20

ℓ2
. (20)

So we see R + 12
ℓ2 = − 8

ℓ2 . The integral over x1, x2, x3 yields V , but since we divide by V , it
becomes 1. The integral over r goes from rH to Rb. Lastly, we use that

√
−g =

(r
ℓ

)3
. (21)

So we obtain

− 1

V

1

16πG

∫
M

r3

ℓ3
− · 8

ℓ2
=

β

16πG

8

ℓ2
1

ℓ3
r4

4

∣∣∣∣Rb

rH

=
β

8πGℓ5
R4
b

(
1− r4H

R4
b

)
. (22)

For the empty solution, we must set rH = 0 and take β0 instead of β, so we obtain

β

8πGℓ5
R4
b

(
1− r4H

2R4
b

)
. (23)

Subtracting both solutions gives

− β

16πGℓ

r4H
ℓ4
. (24)

Now we compute the bulk contribution. We have

nr =
1

√
grr

=

√
r2

ℓ2
f(r) ≈ r

ℓ

(
1− r4H

2r4

)
, (25)

using the fact that it will be evaluated at large r. We also have

√
h =

√
r8

ℓ8
f(r) ≈ r4

ℓ4

(
1− r4H

2r4

)
. (26)

Then
√
hK = nr∂r

√
h ≈ Rb

ℓ

(
1− r4H

2R4
b

)
4R3

b

ℓ4
. (27)

So

− 1

V

1

8πG

∫
∂M

√
hK ≈ − β

2πGℓ

R4
b

ℓ4

(
1− r4H

2R4
b

)
. (28)

The same term for the empty AdS space sets rH = 0 in the above computation, and sets
β → β0. But we see that we will get exactly the same as above! Thus to leading order, the
boundary term cancels between the AdS black brane and the empty AdS space. We thus have

βf = − β

16πGℓ

r4H
ℓ4
. (29)

We now try to rewrite this in terms of β. Using β = πℓ2

rH
, we see

f = − 1

16πGℓ

ℓ4π4

β4
= −π

3ℓ3

16G

1

β4
. (30)
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3. Computing the energy density,

e =
E

V
= ∂β(βf) =

3π3ℓ3

16G

1

β4
. (31)

The entropy density is given by

s =
S

V
= (β∂β − 1)(βf) =

π3ℓ3

4G

1

β3
=

r3H
4Gℓ3

. (32)

The area density is indeed a = A/V = r3H/ℓ
3, so we see that s = a/4G as expected.

4. The specific heat is given by

c = T
∂s

dT
= −β∂βs =

3πℓ3

4G

1

β3
. (33)

This is positive. This tells us that AdS black branes are stable, and do generically not evapo-
rate.

1.1.3 AdS black hole

The Euclidean metric for the five-dimensional black hole is given by

ds2 =

(
1− µ

r2
+
r2

ℓ2

)
dτ2 +

dr2

1− µ
r2 + r2

ℓ2

+ r2dΩ2
3. (34)

One can solve for r+ in terms of µ and finds

µ =
r2+(r

2
+ + ℓ2)

ℓ2
. (35)

1. We begin again by expanding in the near-horizon limit. Writing r = r+ + ξ,

f(r) ≈ 1− µ

r2+ + 2r+ξ
+
r2+ + 2r+ξ

ℓ2
≈ 1− µ

r2+

(
1− 2

ξ

r+

)
+
r2+ + 2r+ξ

ℓ2

=
2µξ

r3+
+

2r+ξ

ℓ2
= 2

ξ(2r2+ + ℓ2)

ℓ2r+

(36)

The r-part of the metric then becomes

dξ2

ξ

ℓ2r+
2(2r2+ + ℓ2)

. (37)

We now write

r̃ =
√
2ξr+

ℓ√
2r2+ + ℓ2

. (38)

Then
2ξ(2r2+ + ℓ2)

ℓ2r+
dτ2 = r̃2

(2r2+ + ℓ2)2

ℓ4r2+
dτ2. (39)

From here we read off that

β =
2πℓ2r+
2r2+ + ℓ2

. (40)
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2. Fixing the size of the Euclidean time circle yields

β0

√
1 +

R2
b

ℓ2
= β

√
1− µ

R2
b

+
R2
b

ℓ2
= β

√
1 +

R2
b

ℓ2

√
1− µ

R2
b

1

1 +
R2

b

ℓ2

β0 ≈ β

√
1− µℓ2

2R4
b

≈ β

(
1− µℓ2

2R4
b

)
.

(41)

Noting that the integral over S3 yields 2π2, we obtain

− 1

16πG

∫
M

√
g

(
R+

12

ℓ2

)
=

2π2β

16πG

8

ℓ2

∫ Rb

r+

r3dr

=
βπ

4Gℓ2
R4
b

(
1−

r4+
R4
b

)
.

(42)

The same term for the empty AdS gives

− 1

16πG

∫
M

√
g0
(
R+

12

ℓ2

)
=

2π2β0
16πG

8

ℓ2

∫ Rb

0

r3dr

=
βπ

4Gℓ2
R4
b

(
1− µℓ2

2R4
b

)
=

βπ

4Gℓ2
R4
b

(
1−

r2+(r
2
+ + ℓ2)

2R4
b

) (43)

Subtracting this from the black hole solution gives for the bulk terms:

− βπ

4πGℓ2
r2+(r

2
+ − ℓ2)

2
. (44)

Now we move on to the boundary terms again. Note that

nr =
1

√
grr

=

√
1− µ

R2
b

+
R2
b

ℓ2
≈ Rb

ℓ

(
1− µℓ2

2R4
b

)
. (45)

We also see
√
h = r3

√
1− µ

r2
+
r2

ℓ2
≈ r4

ℓ

(
1− µℓ2

2r4

)
. (46)

Then
√
hK ≈ Rb

ℓ

(
1− µℓ2

2R4
b

)
4R3

b

ℓ
=

4R4
b

ℓ2

(
1− µℓ2

2R4
b

)
. (47)

So we have

− 1

8πG

∫
∂M

√
hK ≈ 2π2β

8πG

4R4
b

ℓ2

(
1− µℓ2

2R4
b

)
. (48)

For empty AdS, we set µ = 0 and replace β by β0. This gives exactly the same term (to this
order in 1/Rb), so we find

F ≈ − π

8πG

r2+
ℓ2

(r2+ − ℓ2). (49)
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Figure 1: Phase diagram of F plotted as a function of β

3. r+ is related to β in some complicated way. It will therefore not be straightforward to rewrite
F in terms of β. It is much easier to plug the expressions into Mathematica. Then you will
find

E = ∂ββF =
3π

8G

r2+(r
2
+ + ℓ2)

ℓ2
=

3π

8G
µ. (50)

4. The specific heat can be computed once we have the entropy. Mathematica will give us

S =
π2r3+
2G

. (51)

The specific heat then is given by

C = −β∂βS =
3π2r3+(2r

2
+ + ℓ2)

2G(2r2+ − ℓ2)
. (52)

We thus see that this is positive if r+/ℓ > 1/
√
2, and negative if r+/ℓ < 1/

√
2. This means

that small AdS black holes are unstable and can evaporate, whereas large AdS black holes are
stable and do not evaporate.

5. Plotting F as a function of β (for various values of r+) can be found in Fig. 1. The small black
holes correspond to the part of the curve connected to the origin up to the phase transition,
the large black holes are the ones that go to negative F . Empty AdS has F = 0 for all values of
β. At very low temperatures (large β), the thermodynamically preferred configuration (lowest
F ) is thus empty AdS. If we increase T (lower β), at one point the large black holes will start
to dominate. This is the Hawking-Page phase transition.

2 Exercise session 2

2.1 Von Neumann entropy and Rényi entropies

1. We have

ρ12 =
|00⟩ ⟨00|+ |11⟩ ⟨11|

2
=

1

2

(
1 0
0 1

)
,

ρ1 =
|0⟩ ⟨0|+ |1⟩ ⟨1|

2
=

1

2

(
1 0
0 1

)
.

(53)
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These are the same, so the rest of the computation will be identical for both of them. We have
twice the eigenvalue λ = 1/2 so

S(ρ1/12) = log 2. (54)

We have

ρn1/12 =
1

2n

(
1 0
0 1

)
−→ Tr ρn1/12 = 21−n. (55)

So then
S(n)(ρ1/12) = log 2. (56)

2. We have

ρ12 =
|00⟩ ⟨00|+ |01⟩ ⟨01|+ |10⟩ ⟨01|+ |01⟩ ⟨10|+ |10⟩ ⟨10|

3
,

ρ1 =
|1⟩ ⟨1|+ 2 |0⟩ ⟨0|

3
.

(57)

We can write this as matrices as

ρ12 =
1

3

1 0 0
0 1 1
0 1 1

 , ρ1 =
1

3

(
1 0
0 2

)
. (58)

We can compute the eigenvalues of these as

det(ρ12-λ1) =

(
1

3
− λ

)((
1

3
− λ

)2

− 1

9

)
= −λ

(
λ− 2

3

)(
λ− 1

3

)
. (59)

This means that we have

S(ρ12) = −1

3
log

1

3
− 2

3
log

2

3
= log 3− 2

3
log 2. (60)

For ρ1, the eigenvalues are λ = 1
3 ,

2
3 such that

S(ρ1) = −1

3
log

1

3
− 2

3
log

2

3
= log 3− 2

3
log 2. (61)

For the Rényi entropies we use

ρn12 =

(
1

3

)n1 0 0
0 2n−1 2n−1

0 2n−1 2n−1

→ Tr ρn12 =

(
1

3

)n
(2n + 1). (62)

so

S(n)(ρ12) =
n

n− 1
log 3− 1

n− 1
log(2n + 1). (63)

Also

ρn1 =
1

3n

(
1 0
0 2n

)
→ Tr ρn1 =

2n + 1

3n
, (64)

so also for ρ1 we have

S(n)(ρ1) =
n

n− 1
log 3− 1

n− 1
log(2n + 1). (65)
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3. For the GHZ state, the n→ 1 limit is trivial:

lim
n→1

log 2 = log 2. (66)

For the W state, it is a bit more non-trivial. We have

lim
n→1

n log 3− log(2n + 1)

n− 1
= lim
n→1

log 3− 2n log 2
2n+1

1
= log 3− 2

3
log 2. (67)

Here we used l’Hopitals rule, since both the numerator and the denominator approach zero.
Interestingly, both limits equal the respective von Neumann entropies!

4. We have
Tr ρn =

∑
i

λni =
∑
i

λiλ
n−1
i . (68)

We can use λ1 =
∑
i λi and add and subtract 1 to find

Tr ρn = 1 +
∑
i

λi(λ
n−1
i − 1). (69)

5. As n→ 1, the term inside the sum goes to zero. So we can take the limit

lim
n→1

log Tr ρn = lim
n→1

∑
i

λi(λ
n−1
i − 1). (70)

So we see

lim
n→1

S(n) = lim
n→1

∑
i λi(λ

n−1
i − 1)

1− n
= lim
n→1

−
∑
i

λi
λn−1
i log λi

λn−1
i

= −
∑
i

λi log λi = S(ρ). (71)

6. We find
−∂nTr ρn|n=1 = −

∑
i

λni log λi|n=1 = −
∑
i

λi log λi = S(ρ). (72)

2.2 CFT two-point function

1. We write
⟨O(τ1, x1)O(τ2, x2)⟩ = ⟨0| eτ1HO(x1)e

(τ2−τ1)HO(x2)e
−τ2H |0⟩ . (73)

Since the Hamiltonian acting on the vacuum is zero, this is

⟨0| O(x1)e
(τ2−τ1)HO(x2) |0⟩ . (74)

We assume that O is not very special in that it does not create only specific energy eigenvalues.
That means that

O(x2) |0⟩ =
∫ ∞

0

dEf(E, x2) |E⟩ . (75)

This means that we have ∫ ∞

0

dEf(E, x2)e
(τ2−τ1)E ⟨0| O(x1) |E⟩ . (76)

This means that for τ2 − τ1 > 0, unless f(E) decreases exponentially (which it generically
does not do), we have an exponential divergence. If τ1 > τ2, it has an exponential damping,
so it is bounded. This tells us that in Euclidean space, we should only consider time-ordered
correlation functions.
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2. Taking τ = it,

⟨O(it, x)O(0)⟩ = 1

(x2 − t2)∆
. (77)

There are singularities at t = ±|x|.

3. Writing τ = it+ ϵ, we have
x2 + τ2 = x2 − t2 + 2itϵ. (78)

Writing this as a complex number as reiϕ, we can compute

log(x2 − t2 + 2itϵ) = log r + iϕ = log |x2 − t2|+ i arg(x2 − t2 + 2itϵ). (79)

The logarithm has a branch cut. We place it at the negative real axis. Then if x2 − t2 > 0
(spacelike separation), we have arg = 0. If x2− t2 < 0 (timelike separation), it depends on the
sign of t (we take ϵ→ 0+). If t > 0, the argument is π. If t < 0, the argument is −π. So

⟨O(it, x)O(0)⟩ = 1

|x2 − t2|∆


e−iπ∆ timelike, t > 0,

1 spacelike,

eiπ∆ timelike, t < 0.

(80)

Another interesting thing to note is that in Lorentzian correlators, we can consider both time-ordered
and anti-time ordered correlators. Which one corresponds to the Euclidean one? We see that if ϵ > 0,
writing τ = it− ϵ so t = −iτ + ϵ,

⟨O1(t, x)O2(0)⟩L = ⟨O1(−iτ + ϵ, x)O2(0)⟩E . (81)

This is correctly time-ordered, since ϵ > 0 so the Euclidean operators are in the right order. For
anti-time-ordered, taking τ = it+ ϵ with again ϵ > 0,

⟨O1(0)O2(t, x)⟩L = ⟨O1(0)O2(−it− ϵ)⟩E . (82)

So we see that time-ordered Lorentzian correlators correspond to the −ϵ prescription (τ = it − ϵ),
whereas anti-time-ordered Lorentzian correlators correspond to the +ϵ prescription (τ = it+ ϵ).

2.3 Wave propagation in Schwarzschild spacetime

The metric is

ds2 = −f(r)dt2 + dr2

f(r)
+ r2(dθ2 + sin2 θdφ2). (83)

The wave equation is
1√
−g

∂i
(√

−ggij∂jΦ
)
= 0 (84)

1. Explicitly written out in coordinates, using that
√
−g = r2 sin θ, we get the wave equation

1

r2 sin θ
∂r
(
r2 sin θf(r)∂rΦ

)
+

1

r2 sin θ
∂t

(
r2 sin θ

−f(r)
∂tΦ

)
+

1

r2 sin θ
∂θ

(
r2 sin θ

1

r2
∂θΦ

)
+

1

r2 sin θ
∂φ

(
r2 sin θ

1

r2 sin2 θ
∂φΦ

)
= 0,

1

r2
∂r
(
r2f(r)∂rΦ

)
− 1

f(r)
∂2tΦ+

1

r2
∂2θΦ+

1

r2 sin2 θ
∂2φΦ = 0.

(85)
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2. Writing
Φ = e−iωtYlm(θ, φ)ϕωlm(r), (86)

we note

∂2tΦ = −ω2Φ,
1

r2
∂2θΦ+

1

r2 sin2 θ
∂2φΦ = − l(l + 1)

r2
Φ. (87)

Then the wave equation reduces to

1

r2
∂r(r

2f(r)∂rϕ) +
ω2

f
ϕ− l(l + 1)

r2
ϕ = 0. (88)

3. Now we write

ϕ =
ψ

r
, dr∗ =

dr

f(r)
. (89)

Then

∂r
ψ

r
= − ψ

r2
+

1

r

dr∗
dr

ψ′ = − ψ

r2
+
ψ′

rf
. (90)

Here we write ψ = ψ(r∗), so ψ
′ is with the derivative with respect to r∗. However, we will

keep f = f(r), so f ′ means the derivative with respect to r. Then

∂r

(
r2f∂r

ψ

r

)
= ∂r (−ψf + rψ′) = −ψf ′ − ψ′ + ψ′ +

r

f
ψ′′ = −ψf ′ + r

f
ψ′′. (91)

The wave equation becomes

−ψf
′

r2
+
ψ′′

fr
+
ω2

fr
ψ − l(l + 1)

r3
ψ = 0. (92)

This can be rewritten to

−ψ′′ =

(
ω2 − f

(
f ′

r
+
l(l + 1)

r2

))
ψ. (93)

So we have

Vl(r) = f

(
f ′

r
+
l(l + 1)

r2

)
. (94)

4. For specified f , one can plot V as a function of r (or r∗). For the Schwarzschild metric,
f(r) = 1− 2GM

r , this is visualised in Fig. 2.

5. It can be seen that this potential does not have any minima. Because of that, there cannot be
any bound states. Furthermore, the effective potential has a maximum. For ω much smaller
than this potential maximum, the waves get mostly reflected back to infinity, while for ω much
larger, the waves get absorbed by the black hole.

3 Exercise session 3

3.1 Holographic 4-pt functions: how to succeed without really trying

1. Just match the subscripts of the functions to the lines!
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Figure 2: Effective potential Vl as a function of r∗.

2. We can write
z20 + |z− z′|2 = (z − z′)2. (95)

Under inversion, this becomes

(z̄ − z̄′)2 =
z2

z4
+

(z′)2

(z′)4
− 2zz′

z2(z′)2
=

(z − z′)2

z2(z′)2
. (96)

This means that

G(z̄0, z̄, z̄′) =
(
z20
z2

z2(z′)2

(z − z′)2

)∆

= G(z0, z, z′)|z′|2∆. (97)

3. We first use boundary translation invariance to send z1 → 0 and z3 → z31.

A3(w, z1, z3) =

∫
dd+1u

ud+1
0

G∆(ξ)G∆1
(u, 0)G∆3

(u, z31)

=

∫
dd+1u

ud+1
0

G∆(ξ)
(u0
u2

)∆1

G∆3
(u, z31

(98)

Note that ξ is invariant under inversion:

ξ̄ =
(z̄ − w̄)2

2w̄0z̄0
=

(z − w)2

2w0z0
= ξ. (99)

So we see that

A3(w, z1, z3) = |z13|−2∆3

∫
dd+1u

ud+1
0

G∆(ξ) (u0)
∆1

(
u0

(u− z̄31)2

)∆3

. (100)

Now we take u→ u+ z̄31 = u− z̄13. This keeps the integral measure invariant, but ξ changes.
However, if we send w → w − z̄13 as well, then ξ is invariant again. So we see that

A3(w, z1, z3) = |z13|−2∆3I(w̄ − z̄13) (101)

where

I(w) =

∫
dd+1u

ud+1
0

G∆(ξ) (u0)
∆1

(u0
u2

)∆3

(102)
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4. Poincaré transformations on the boundary do not transform w0 and u0. It also keeps (u−w)2
invariant. So this means that ξ is invariant under these transformations. u0 is again not
transformed under these and u2 is also manifestly Poincaré invariant.

5. Scaling both u and w gives (u−w)2 → λ2(u−w)2, this cancels exactly against w0z0 → λ2w0z0.
So the chord distance is invariant if we also rescale u. The integral measure is also invariant

under this. u∆0 transforms to λ∆1u∆1
0 and

(
u0

u2

)∆3
goes to λ−∆3

(
u0

u2

)∆3
so we see that

I(λw) = λ∆13I(w). (103)

6. The function that is invariant under both rescaling and Poincaré transformations is s ≡ w2
0

w2 .
So any function of this will be invariant under the transformations mentioned above. We still
want total invariance under the Poincaré subgroup, but a specific scaling law, so the function
will in general be of the form

I(w) = w∆13
0 f(s). (104)

7. We want to show that (
−∇2 +m2

)
I(w) = w∆13

0

(
w2

0

w2

)∆3

. (105)

We can use the fact that

(−∇2 +m2)G∆(ξ) =
δ(u− w)

√
g

= δ(u− w)ud+1
0 . (106)

This means that(
−∇2 +m2

)
I(w) =

∫
dd+1u

ud+1
0

(−∇2 +m2)G∆(ξ)u
∆1
0

(u0
u2

)∆3

=

∫
dd+1u

ud+1
0

δ(u− w)ud+1
0 u∆1

0

(u0
u2

)∆3

= w∆1
0

(w0

w2

)∆3

= w∆13
0

(
w2

0

w2

)∆3

.

(107)

8. You should find the correct result after working precisely or plugging this into Mathematica.
It’s taking derivatives.

9. s → 1 corresponds to w → 0. This is not at all a special point in the bulk, so f should be
smooth there.

10. As w0 → 0, ξ ∼ w−∆
0 . The hypergeometric function approaches 1 as 1/ξ2 approaches zero, so

G ∼ w∆
0 . Since we need w∆13

0 f(s) ∼ w∆
0 , we need f(s→ 0) ∼ w∆−∆13

0 so

f(s→ 0) ∼ s
∆−∆13

2 . (108)

11. The differential equation reduces to

4s2(s− 1)f ′′ + 4s

[
(∆13 + 1)s−∆13 +

D

2
− 1

]
f ′ +

[
∆13(D −∆13) +m2

]
f = s∆3 . (109)
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Plugging in f =
∑
l als

∆3+l gives

∑
l

al

(
4(s− 1)(∆3 + l)(∆3 + l − 1)s∆3+l + 4

[
(∆13 + 1)s−∆13 +

D

2
− 1

]
(∆3 + l)s∆3+l

+
[
∆13(D −∆13) +m2

]
s∆3+l

)
= s∆3

(110)

This gives∑
l

al

(
4(s− 1)(∆3 + l)(∆3 + l − 1)sl + 4

[
(∆13 + 1)s−∆13 +

D

2
− 1

]
(∆3 + l)sl

+
[
∆13(D −∆13) +m2

]
sl
)

= 1

(111)

We will consider only fixed powers of s. For order n in l, we will have contributions from both
an and an−1. To zeroth order in s, we should have exactly 1. This will get contributions from
l = 0 and l = −1. So:

a−1 (4(∆3 − 1)(∆3 − 2) + 4(∆13 + 1)(∆3 − 1)) = 4a−1 (−∆3 + 1 +∆1∆3 −∆1) = 1 (112)

This means that

a−1 =
1

4(1−∆1)(1−∆3)
(113)

For lower orders of s we see

ak−1 (4(∆3 + k − 1)(∆3 + k − 2) + 4(∆13 + 1)(∆3 + k − 1))

= −ak
(
−4(∆3 + k)(∆3 + k − 1)− 4(∆3 + k)(−∆13 +

D

2
− 1) + ∆13(D −∆13 +m2)

)
(114)

Using the fact that ∆ = D
2 + 1

2

√
D2 + 4m2, you should be able to rewrite this to the formula

given.

12. If one of the ak ever becomes zero, then everything below that will also be zero. This means
that either

l = −∆1 +∆3 −∆

2
(115)

or

l = −∆1 +∆3 +∆−D

2
. (116)

So it terminates if either ∆1 +∆3 −∆ is a positive, even number or if ∆1 +∆3 +∆−D is a
positive, even number. However, we want

l +∆3 =
∆−∆13

2
, (117)

so we pick the first option.
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13. We just plug in the result:

A3 = |z13|−2∆3I(w̄ − z̄13) = |z13|−2∆3w̄0
∆13

∑
k

ak

(
w̄0

2

(w̄ − z̄13)2

)∆3+k

= |z13|−2∆3

(w0

w2

)∆13 ∑
k

ak

(
w2

0z
2
13

w2(w − z13)2

)∆3+k

.

(118)

and we get

A4 =
∑
l

al

∫
dD+1w

wD+1
0

G∆2
(w, z2)G∆4

(w, z4)|z13|−2∆3

(w0

w2

)∆13
(

w2
0z

2
13

w2(w − z13)2

)∆3+l

=
∑
l

al

∫
dD+1w

wD+1
0

G∆2
(w, z2)G∆4

(w, z4)|z13|2l
(w0

w2

)∆13
(

w2
0

w2(w − z13)2

)∆3+l
(119)

Now

G∆1+l(w, 0)G∆3+l(w, z13) =
(w0

w2

)∆1+l
(

w0

(w − z13)2

)∆3+l

= w∆1−∆3
0

(
1

w2

)∆1+l( w2
0

(w − z13)2

)∆3+l

=
(w0

w2

)∆13
(

w2
0

w2(w − z13)2

)∆3+l

.

(120)

So we see that we indeed have

A4 =
∑
l

al|z13|2l
∫
dD+1w

wD+1
0

G∆1+l(w, 0)G∆3+l(w, z13)G∆2
(w, z2)G∆4

(w, z4). (121)

3.2 3d gravity as group theory

1. We have

σ2 =

(
0 −i
i 0

)
, σ2

2 =

(
1 0
0 1

)
. (122)

This means that

e
i
2 (t+ϕ)σ2 =

∞∑
n=0

(i(t+ ϕ))n

n!
σn2 =

∞∑
n=0

(−1)n
(
t+ϕ
2

)2n
2n!

1+ i

∞∑
n=0

(−1)n
(
t+ϕ
2

)2n+1

(2n+ 1)!
σ2

= cos

(
t+ ϕ

2

)
1+ i sin

(
t+ ϕ

2

)
σ2 =

 cos
(
t+ϕ
2

)
sin
(
t+ϕ
2

)
− sin

(
t+ϕ
2

)
cos
(
t+ϕ
2

) .

(123)

We also have

σ3 =

(
1 0
0 −1

)
, σ2

3 =

(
1 0
0 1

)
. (124)
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Then

eρσ3 =

∞∑
n=0

ρn

n!
σn3 =

∞∑
n=0

ρ2n

2n!
1+

∞∑
n=0

ρ2n+1

(2n+ 1)
σ3

= cosh ρ1+ sinh ρσ3 =

(
cosh ρ+ sinh ρ 0

0 cosh ρ− sinh ρ

)
.

(125)

Then

e
i
2 (t+ϕ)σ2eρσ3e

i
2 (t−ϕ)σ2

=

 cos
(
t+ϕ
2

)
sin
(
t+ϕ
2

)
− sin

(
t+ϕ
2

)
cos
(
t+ϕ
2

)(cosh ρ+ sinh ρ 0
0 cosh ρ− sinh ρ.

) cos
(
t−ϕ
2

)
sin
(
t−ϕ
2

)
− sin

(
t−ϕ
2

)
cos
(
t−ϕ
2

)
=

(
cos t cosh ρ+ cosϕ sinh ρ sin t cosh ρ− sinϕ sinh ρ
− sin t cosh ρ− sinϕ sinh ρ cos t cosh ρ− cosϕ sinh ρ

)
.

(126)

2. The group parametrized by 2x2 real matrices with determinant 1 is SL(2,R).

3. Plugging it into Mathematica will show you!

4. We compute

eφσ3 =

∞∑
n=0

φn

n!
σn3 =

∞∑
n=0

φn

n!

(
1 0
0 (−1)n

)

=

(∑∞
n=0

φn

n! 0

0
∑∞
n=0

(−φ)n
n!

)
=

(
eφ 0
0 e−φ

)
.

(127)

The same goes for eψσ3 . Lastly,

eρσ1 =

∞∑
n=0

ρ2n

(2n)!
1+

∞∑
n=0

ρ2n+1

(2n+ 1)!
σ1

=

(
cosh ρ sinh ρ
sinh ρ cosh ρ

)
=

(
r

√
r2 − 1√

r2 − 1 r

)
.

(128)

Here we used r = cosh ρ, sinh ρ =
√
cosh2 ρ− 1 for ρ, r positive. It is easy to check that all

three matrices have determinant 1, so the product of all three will also have determinant 1.

5. Again, simply plugging into Mathematica gives the desired result.

4 Exercise session 4

4.1 Black hole information paradox

1. For the four-dimensional Reissner-Nordström black hole, the metric is given by

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

2, f(r) = 1− 2M

r
+
Q2

r2
. (129)
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The horizons are at
r± =M ±

√
M2 −Q2. (130)

We will work in the near-horizon, near-extremal limit. That means that we will take M =
Q + ∆M with ∆M small. This gives r± ∼ |Q| (we will take Q positive from now on). The
near-horizon limit we will take as r = Q+Q2r̃, with Q2r̃ small. Then

f(r) = 1− 2Q+ 2∆M

r
+
Q2

r2

=
(r −Q)2

r2
− 2∆M

r
≈ Q2r̃2 − 2∆M

Q
.

(131)

We also have dr2 = Q4dr̃2, so

ds2 → Q2

(
−
(
r̃2 − 2M

Q3

)
dt2 +

dr̃2

r̃2 − 2M
Q3

+ dΩ2
2

)
. (132)

This tells us that the near-horizon, near extremal limit of the Reissner-Nordström black hole
looks like a black hole on AdS2 × S2.

2. Writing t = f(u) and z = z(u), we find

guu =
−(f ′)2 + (z′)2

z2
=

−1

ϵ2
. (133)

Since the boundary particle is near the boundary, we can assume z is small. We will also
assume that its trajectory is not too wildly fluctuating, such that z′ is also small. Then

guu ≈ − (f ′)2

z2
= − 1

ϵ2
. (134)

We see that for any f , we can solve this by setting z = ϵf ′. Then we go to the dilaton profile.
Since x+x− = t2 − z2 ≈ f2 and x+ − x− = 2z = 2ϵf ′, we find

ϕ|bdy ≈ ϕ̄r
1− (πT0)

2f2

ϵf ′
=
ϕ̄r
ϵ
. (135)

To solve this, we need f ′ = 1− (πT0)
2f2. We can solve this through∫
df

1− (πT0)2f2
=

∫
du,

1

πT0

∫
df̃

1− f̃2
=

arctanh f̃

πT0
= u,

f̃ = tanh(πT0u),

f(u) =
1

πT0
tanh(πT0u).

(136)

3. The boundary is parameterized through t = f(u), z = ϵf ′(u). This means that we can write

f(ȳ) = x̄ = t+ z = f(u) + ϵf ′(u) ≈ f(u+ ϵ),

f(y) = x = −t+ z = −f(u) + ϵf ′(u) ≈ −f(u− ϵ).
(137)
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Assuming f(−y) = −f(y), we derive from here that the boundary in y, ȳ coordinates is given
by

ȳ = u+ ϵ, y = −(u− ϵ). (138)

That means that y+ ȳ = 2ϵ is the boundary location, and the time there is given by ȳ−y
2 = u.

4. Möbius transformations are defined as

w(x) =
ax+ b

cx+ d
, ad− bc ̸= 0. (139)

Then

w′ =
(cx+ d)a− (ax+ b)c

(cx+ d)2
=

ad− bc

(cx+ d)2
,

w′′ = −2(ad− bc)
c

(cx+ d)3

w′′′ = 6c2(ad− bc)
1

(cx+ d)4
.

(140)

Therefore we see that

{w, x} =
6c2

(cx+ d)2
− 3

2

4c2

(cx+ d)2
= 0. (141)

5. A BCFT two-point function is computed by a CFT four-point function, with mirrored oper-
ators and half the conformal dimensions. The mirrored operator from (x, x̄) has coordinates
(−x̄,−x)

⟨σ(x1, x̄1)σ(x2, x̄2)⟩BCFT,∆ = ⟨σ(x1, x̄1)σ(x2, x̄2)σ(−x̄1,−x1)σ(−x̄2,−x2)⟩CFT,∆/2.

A conformal primary of dimension ∆ scales under a conformal transformation as

O(x)Ω−2g = Ω(x)∆O(x)g. (142)

This means that

⟨σ(x1, x̄1)σ(x2, x̄2)⟩BCFT,∆,Ω−2g

= Ω(x1, x̄1)
∆/2Ω(x2, x̄2)

∆/2Ω(−x̄1,−x1)∆/2Ω(−x̄2,−x2)∆/2⟨σ(x1, x̄1)σ(x2, x̄2)⟩BCFT,∆,g

= Ω(x1, x̄1)
∆Ω(x2, x̄2)

∆⟨σ(x1, x̄1)σ(x2, x̄2)⟩BCFT,∆,g.

This means that

S
(n)
Ω−2g = − 1

n− 1
log
(
Ω(x1, x̄1)

∆Ω(x2, x̄2)
∆
)
+ Sg = − c

12

n+ 1

n

∑
endpoints

log Ω + S(n)
g . (143)

This gives us

SΩ−2g = Sg −
c

6

∑
endpoints

log Ω. (144)

6. The conformal cross-ratio is given by

η =
(w1 + w̄1)(w2 + w̄2)

(w1 + w̄2)(w2 + w̄1)
. (145)
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We write w = Z − T and w̄ = Z + T . A translation in T very obviously cancels out in the
conformal cross ratio. The BCFT is not invariant under transformations in Z (orthogonal to
the boundary), so we don’t have to check that one. Neither is it invariant under rotations. We
are left with scale transformations and inversions. A scaling also obviously cancels out. An
inversion gives

η →
( 1
w̄1

+ 1
w1

)( 1
w̄2

+ 1
w2

)

( 1
w̄1

+ 1
w2

)( 1
w̄2

+ 1
w1

)
=

(w1 + w̄1)(w2 + w̄2)

(w2 + w̄1)(w1 + w̄2)
= η. (146)

7. Both endpoints to the past of the shock means x+1,2 > 0 and x−1,2 < 0. This means that
x1,2, x̄1,2 > 0. We take one of the endpoints all the way into the AdS. In the w-space, this
means that one of the endpoints is at w = 0, the boundary. So we need to use the formula

Sg =
c

6
log(w + w̄) + log g. (147)

We need to transform to our metric, so we actually need the formula

S =
c

6
log(w + w̄) + log g − c

6
log Ω(w, w̄). (148)

Since
4dxdx̄

(x+ x̄)2
=

4w′(x)w̄′(x̄)

(x+ x̄)2
dwdw̄ =⇒ Ω(w, w̄) =

x+ x̄

2

√
w′(x)w̄′(x̄). (149)

Since x, x̄ > 0 we use

w =
w2

0

x
→ w′ = −w

2
0

x2
,

w̄ =
w2

0

x̄
→ w̄′ = −w

2
0

x̄2
,

(150)

so

Ω =
x+ x̄

2

√
w4

0

x2x̄2
=
w2

0

2

(
1

x̄
+

1

x

)
=
w + w̄

2
. (151)

Therefore,

S =
c

6
log 2 + log g. (152)

8. We take one endpoint to the future (x1) and one to the past (x2). This means x1 < 0, x̄1 > 0,
x2, x̄2 > 0 We first compute the conformal cross-ratio. We have (we transform to lightcone
coordinates already)

w1 = f−1(x−1 ), w̄1 =
w2

0

x+1
, w2 = −w

2
0

x−2
, w̄2 =

w2
0

x+2
. (153)

Then the conformal cross-ratio is

η =

(
f−1(x−1 ) +

w2
0

x+
1

)(
w2

0

x+
2

− w2
0

x−
2

)
(
f−1(x−1 ) +

w2
0

x+
2

)(
w2

0

x+
1

− w2
0

x−
2

) ≈

(
1
x+
2

− 1
x−
2

)
(

1
x+
1

− 1
x−
2

) =
x+1 (x

−
2 − x+2 )

x+2 (x
−
2 − x+1 )

. (154)
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For x2, we can use the computation we did just now:

Ω(x−2 , x
+
2 ) =

w2
0

2

(
1

x+2
− 1

x−2

)
=
w2

0(x
−
2 − x+2 )

2x+2 x
−
2

(155)

For x1, it is a little bit more complicated. We find

d

dx
f−1(−x) = d(−y)

dx
= −

(
dx

dy

)−1

= − 1

f ′(y)
= − 1

f ′(y−)
(156)

So

Ω =
x+1 − x−1

2

√
w2

0

(x+1 )
2

1

f ′(y−1 )
. (157)

We will also use

w1 − w2 ≈ f−1(x−1 ) = y−1 , w̄1 − w̄2 = w2
0

(
1

x+1
− 1

x+

)
=
w2

0(x
+
2 − x+1 )

x+1 x
+
2

(158)

The last ingredient that we need is

ES ≈ c

24π

2

w0
. (159)

Putting everything together,

S =
c

6
log

(
w2

0y
−
1 (x

+
2 − x+1 )

x+1 x
+
2

x+1 (x
+
2 − x−2 )

x+2 (x
+
1 − x−2 )

)
+ logG (η)

− c

6
log

(
w2

0(x
−
2 − x+2 )

2x+2 x
−
2

x+1 − x−1
2

√
w2

0

(x+1 )
2

1

f ′(y−1 )

)

=
c

6
log

 4

w0

−y−1 x
+
1 x

−
2

√
f ′(y−1 )

x+2

x+2 − x+1
(x+1 − x−2 )(x

+
1 − x−1 )

+ logG(η)

=
c

6
log

48πES
c

−y−1 x
+
1 x

−
2

√
f ′(y−1 )

x+2

x+2 − x+1
(x+1 − x−2 )(x

+
1 − x−1 )

+ logG(η).

(160)

9. Both endpoints to the future of the shock gives

w1 = f−1(x−1 ) = y−1 , w̄1 =
w2

0

x+1
, w2 = f−1(x−2 ) = y−2 , w̄2 =

w2
0

x+2
. (161)

We will also use

Ω(x+1 , x
−
1 ) =

x+1 − x−1
2

√
w2

0

(x+1 )
2

1

f ′(y−1 )
, Ω(x+2 , x

−
2 ) =

x+2 − x−2
2

√
w2

0

(x+2 )
2

1

f ′(y−2 )
. (162)

We also have

η =

(
f−1(x−1 ) +

w2
0

x+
1

)(
w2

0

x+
2

+ f−1(x−2 )
)

(
f−1(x−1 ) +

w2
0

x+
2

)(
w2

0

x+
1

f−1(x−2 )
) ≈ f−1(x−1 )f

−1(x−2 )

f−1(x−1 )f
−1(x−2 )

= 1. (163)
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So we can use logG(1) ≈ 0. The last ingredient is

w1 − w2 = f−1(x−1 )− f−1(x−2 ) = y−1 − y−2 , w̄1 − w̄2 =
w2

0(x
+
2 − x+1 )

x+1 x
+
2

. (164)

Putting everything together yields

S =
c

6
log

(
(y−1 − y−2 )

w2
0(x

+
2 − x+1 )

x+1 x
+
2

)
− c

6
log

(
x+1 − x−1

2

√
w2

0

(x+1 )
2

1

f ′(y−1 )

x+2 − x−2
2

√
w2

0

(x+2 )
2

1

f ′(y−2 )

)

=
c

6
log

4
√
f ′(y−1 )f

′(y−2 )(y
−
1 − y−2 )(x

+
2 − x+1 )

(x+1 − x−1 )(x
+
2 − x−2 )

 .

(165)
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