Exercises 2

August 2024

1 Rényi entropies and von Neumann entropy

GHC and W state. In this exercise, we will compute some Rényi entropies
and von Neumann entropies, and prove an interesting relation between the two.
Recall that for a density matrix p, the von Neumann entropy is defined as
S(p) = — Trplog p. The n’th Rényi entropy is defined as
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1. The GHZ state is a 3-qubit state defined as
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Compute both the von Neumann entropy and the Rényi entropy (for gen-
eral n > 2) for p; and pia.

2. Repeat the same calculations for the W-state:
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3. If you analytically continue the n’th Rényi entropy to be some function of
all n (not only integers with n > 2), then one can compute the limit of the
Rényi entropy with n going to 1. Compute this, for the Rényi entropies
you computed in the previous exercises.
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4. If you did everything correctly, you should have found that the limit re-
duces to the von Neumann entropy:
lim ™) (p) = S(p). (4)
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Now we are going to prove it, for general density matrices! In terms of
the eigenvalues \; of some density matrix p, the von Neumann entropy is
given by

S(p) = — Z Ailog A;. (5)



We are going to show that the limit of the Rényi entropies obeys the same
formula. First, show that

Trp" =1+ MNP -1). (6)

5. Then, show that in the limit of n going to 1,
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lim ——logTrp" = lim ZAZ.(A;H —1). (7)

From here, prove (4).
6. Optional Another way of obtaining the von Neumann entropy from the
Rényi entropies is
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S(p) = “dn Trp

(8)
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Prove that this is indeed the case, for general density matrices.

2 CFT Two-point function

Euclidean correlation functions are always time ordered:

(O1(21) ... Op(22)) = (0| T{O1(11,%1) . .. O (70, %) } |0) . (9)

The time evolution is generated by the Hamiltonian H:

O(r,x) = eTH@(O,x)e_TH. (10)
1. Consider the correlation function
(0] O(11,%1)0(72,%2) |0) . (11)

Show that, if the operators are anti-time ordered (72 > 71), that this
correlator is infinite, whereas for time-ordered correlators it is bounded.

2. From conformal symmetry, we know

1

(O X)00)) = gy
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Wick rotating to Lorentzian, where are the singularities for generic A?

3. Writing 7 = it + € with ¢ — 0T, write down the Lorentzian correlator.
Show how the correlator obtains a phase, dependant on the causal config-
uration.



