
Exercise on Cosmology
(Dated: August 5, 2024)

Constrain cosmological parameters from SNIa and BAO “data”.

Package requirements

I suggest installing python via https://docs.anaconda.com/free/anaconda/install/index.html. I also suggest
creating an environment specific to this exercise, or in general this Summer School, so that you will:

• learn to use the good practice of environments;

• any stuff you install for this won’t “pollute” your general conda installation (see point above).

A very useful link is of course the cheat sheet, and also this. The packages that will be needed are numpy (of
course), matplotlib (for plots), scipy (for integrals, function minimization, etc.). For the sampling and derivation of
constraints I suggest:

• emcee. See e.g. this link, which is essentially all you need to carry out this exercise;

• getdist. See this and this. Once you have the MCMC chains, this has more fancy methods of plot and analysis.

Both can be installed via conda with

conda install -c conda-forge emcee
conda install -c conda-forge getdist

Always install them in your specific environment! Just run the above commands once you have gone to your environment
via “conda activate my_env”. It is a good practice!

Physics (luminosity distance and energy budget)

We need Standard Candles to measure the distance. Let’s recall that the luminosity distance is defined such as

F = L

4π (1 + z)2r2︸ ︷︷ ︸
d2
L

, (1)

where F is the observed flux, L is the object’s luminosity, and

• in a flat universe, 4πr2 is the proper area of a sphere that is drawn around the object and crosses the Earth at
observation time t0. I.e. as if the object and the observer were both at t0;

• we get a factor of 1/(1 + z) because of the difference in the energy of photons at the reception point from the
energy at emission;

• the same factor enters in the expression for the number of photons crossing a unit receiving area in a unit time,
since the time intervals for the source and observer differ by a factor 1/(1 + z).

Recall that in conformal time

ds2 = a2(η)
(
−dη2 + dr2 + r2dΩ2

)
. (2)

For a curved universe, replace r2 by

r2 →


sin2(

√
K r)

K for K > 0 ,
sinh2(

√
|K| r)

|K| for K < 0 .
(3)

https://docs.anaconda.com/free/anaconda/install/index.html
https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf
https://conda.io/projects/conda/en/latest/commands/index.html
https://emcee.readthedocs.io/en/stable/tutorials/line/
https://getdist.readthedocs.io/en/latest/intro.html
https://getdist.readthedocs.io/en/latest/plot_gallery.html
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Then, we need to compute r2. Photons follow lightlike paths ds2 = 0 so, fixing dΩ = 0 since they have a fixed
direction, the FLRW metric above tells us that (reinstating units, c is the speed of light c ≈ 3× 105 km/s)

r = c

∫ z

0
dz′ 1

H(z′) , (4)

where the Friedmann equations (neglecting radiation) tell us that

H(z) = H0
√

(ΩΛ)0 + (ΩK)0(1 + z)2 + (Ωm)0(1 + z)3 , (5)

where (ΩΛ)0 + (ΩK)0 + (Ωm)0 = 1! We also need K if we are in a curved universe: we recall that at a generic redshift
the fractional contribution of spatial curvature to the energy density is

ΩK = − K

(aH)2 , (6)

hence

K = −(ΩK)0H
2
0 . (7)

From now on we drop the subscript “0” on Ωs.
In the exercise we will focus on a flat universe, with “dark energy” following the “w0-wa” parameterization. See e.g.

https://arxiv.org/abs/1411.1074v3. For this universe we have

H(z) = H0

√
(1− Ωm)(1 + z)3(1+w0+wa)e−

3waz
1+z + Ωm(1 + z)3 . (8)

I don’t really understand the physics of this parameterization, ask Marko for more details on it. We will focus on
wa = 0, and the goal is measuring Ωm and w0, and discover if the “Universe” I made up has a cosmological constant
(w0 = −1) or not.

Then, we observe fluxes and obtain distances if we know L of the object. Some examples are Cepheids and SNIa
(see below, the section after BAO).

Physics (BAO)

As Marko explained, we have a feature in the matter power spectrum. Given a reference point (e.g. an overdensity),
there is a preferential clustering of galaxies at a distance rd from it. If we know ωb (recall that ωspecies = Ωspeciesh

2),
we have

rd = 55.154 e−72.3(ων+0.0006)2

(Ωmh2)0.25351ω0.12807
b

Mpc ,

where

ων = 0.0107×
∑
νmν

1.0 eV .

Then, if we measure the angular size of this “standard ruler” of which we know the size via the formula above, we can
infer distance to it using the angular diameter distance.

In practice, what we measure best is α,1 and this is related to the “volume-averaged distance” by

α = DV

rd

rd,fid

DV,fid
,

where

DV =
[
zDH(z)D2

M (z)
] 1

3
,

1 Essentially, the conversion between angles and distances is different depending on whether we observe the clustering between galaxies
whose separation vector is orthogonal to the line of sight. The most well-measured “angle” is this α.

https://arxiv.org/abs/1411.1074v3
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Figure 1: Angular diameter distance.

with

DH(z) = c

H(z) ,

the comoving angular diameter distance in flat space (equal to the comoving distance in flat space) being

DM (z) = c

∫ z

0
dz′ 1

H(z′) .

Here, “fid” denotes a fiducial cosmology that we use to convert from measured angles and redshifts to distances. We
use the convention hfid = 0.7, Ωm,fid = 0.3, w0,fid = −1 and wa,fid = 0. These have nothing to do with the cosmological
parameters you want to infer! We fix also ∑

ν

mν = 0.06 eV

and (CMB prior: this quantity is measured very well from CMB temperature anisotropies)

ωb = 0.0224 .

Finally, recall that for a flat universe

H(z) = H0
√

(1− Ωm) + Ωm(1 + z)3 .

For a flat w0-wa universe, instead, we have (https://arxiv.org/abs/1411.1074v3)

H(z) = H0

√
(1− Ωm)(1 + z)3(1+w0+wa)e−

3waz
1+z + Ωm(1 + z)3 .

Standard candles

Cepheids

These have intrinsic L between 400L� and 40000L�. So apparently not very standardized. But: looking at Cepheids
in the Small Magellanic Cloud (which covers a small redshift, so we can forget about variations in d2

L when converting
from flux to L), Leavitt found a relation between period of pulsation and mean brightness. Hence, if you measure
period, you can infer brightness, if you assume all Cepheids behave the same. But, you still need to calibrate the
period-luminosity relation! Otherwise you can only measure ratios of d2

L between Cepheids. This could be done if you
have a close Cepheid, measure the flux, and measure the parallax distance dπ, and infer luminosity via f = L/(4πd2

π).
It is tricky to use these stars if they are not in the Hubble flow, and peculiar velocities must be accounted for. This
happens if z . 0.02. Let’s turn to SNIa then!

https://arxiv.org/abs/1411.1074v3
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Figure 2: Stellar parallax.

SNIa

They have intrinsic L around 4× 109L�. But “around” is bad. We would like that all SNIa have same luminosity!
How do we determine it? The shape of the light curve (which should be how luminosity varies with time around
the explosion) is correlated with the peak luminosity. If light curve shoots up and declines down rapidly, SNIa is
less luminous, and vice versa. Also here you need to calibrate. You find a set of SNIa whose distance you find via
observation of Cepheids in same galaxy, for example.

One more thing is apparent magnitude and absolute magnitude. Apparent magnitude m is defined as

m = −2.5 log10(f/fx) , (9)

where the reference flux is fx = 2.53× 10−8 watt m−2. The absolute magnitude is defined as the apparent magnitude
it would have at a luminosity distance of 10 pc, i.e.

M = −2.5 log10(L/Lx) , (10)

where Lx = 78.7L�, so that an object that produces f = fx and is at dL = 10 pc would have L = Lx. Then, one can
easily see that the difference between apparent and absolute magnitudes µ is

µ = 5 log10

(
dL

10 pc

)
= 5 log10

(
dL

1 Mpc

)
+ 25 . (11)

If we measure fluxes and know luminosities, we can get µ, and from here get dL. Anyway, in the exercise, since I
provide made-up data, I give you directly the fluxes. If I were to give you data from e.g. http://supernova.lbl.
gov/Union/figures/SCPUnion2_mu_vs_z.txt, you would get a list of redshifts (the error on the redshift must have
already been accounted for), of difference between apparent and absolute magnitudes µ, and errors on these.

Exercise

The data include a list of redshifts, of fluxes, and the errors on fluxes. We assume that errors are uncorrelated between
redshifts, and Gaussian. From these data, you can try to measure the quantities Ωm and w0. Recall that in a flat
universe we have

dL = (1 + z)dco , (12)

where the comoving distance to redshift z is given by

dco = c

∫ z

0
dz′ 1

H(z′) , (13)

where c is the speed of light c ≈ 3× 105 km/s and

H(z) = H0

√
(1− Ωm)(1 + z)3(1+w0+wa)e−

3waz
1+z + Ωm(1 + z)3 , (14)

http://supernova.lbl.gov/Union/figures/SCPUnion2_mu_vs_z.txt
http://supernova.lbl.gov/Union/figures/SCPUnion2_mu_vs_z.txt
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where you can fix wa = 0. Importantly, h is defined by

H0 = h× 100.0 km/s
Mpc . (15)

You can fix h = 0.67 in the exercise.
From these formulas you are able to compute the luminosity distance in Mpc, which is what you need to analyze the

data and infer Ωm and w0. Again, you can assume zero spatial curvature, h = 0.67 and wa = 0 for this exercise. You
will see that with only SNIa data you cannot constrain these quantities, there is a lot of degeneracy between these two
parameters. In other words, you cannot nail down if you have a cosmological constant or not.

You will see that the same happens for BAO, where recall that the thing you measure is α, defined as

α = DV

rd

rd,fid

DV,fid
. (16)

In the exercise I give you a set of redshifts (DESI-like), a set of corresponding measured αs, and errors on these
measurements. You can try to infer also here Ωm and w0 and see what happens. Also in this case you shouldn’t be
able to nail down this “Universe”.

If you combine the datasets, instead. . .
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