Petnica Summer School

Problem Sets

————————————————-

 \sqrt{E} xEROSE 1 Start with the FLRW metric and write 7 m conformed time. Why is A weful ? (set $k=0$). Define the conformed Hubble paremeter $M = 0$, them is a related to H? How does the evolve in RD/HD ? And DE? Whithe lath Freelmann cg.s in terms of 11 and 2.

 $ds^{2} = dt^{2} + \alpha^{2}(t) \left(\frac{dr^{2}}{1-Kr^{2}} + r^{2}d\theta^{2} + r^{2}seu^{2}\theta d\phi^{2} \right)$ $ds^{2} = \Omega^{2}(T) \left(-dT^{2} + \frac{dr^{2}}{1 - K^{r^{2}}} + r^{2}d\theta^{2} + r^{2}seu^{2}\theta d\phi^{2} \right)$ K=0 - conformally Hinkowski $H=\frac{\alpha'}{\alpha}=\frac{1}{\alpha}\frac{d\alpha}{d\tau}=\frac{1}{\alpha}\frac{\alpha}{d\tau}=\frac{1}{\alpha}H$ $4\theta^{-4} = \frac{1}{4} = \frac{1}{2}$ MD: $a \propto t^{2/3} \longrightarrow \dot{a} \propto t^{-1/3}$
RD: $a \propto t^{4/2} \longrightarrow \dot{a} \propto t^{-1/2}$ M^{-1} at $t^{\frac{1}{4}}$ RD and law measured $a \times e^{\mathsf{H} \mathsf{t}} \longrightarrow \dot{a} \times e^{\mathsf{H} \mathsf{t}}$ In a e^{-HE} + decreases with time!

$$
\int H^{2} = \frac{8\pi}{3} \int -\frac{K}{\alpha^{2}}
$$
\n
$$
\int H + H^{2} = \frac{4\pi}{3} (\rho + 3\rho)
$$
\n
$$
\int H^{2} = \frac{4h'}{\alpha^{2}}
$$
\n
$$
\int H^{2} = \frac{8\pi}{3} \alpha^{2} \rho - K
$$
\n
$$
\int \frac{1}{\alpha} \frac{d}{dt} (\frac{H}{\alpha}) + \frac{H^{2}}{\alpha^{2}} = -\frac{4\pi}{3} (\rho + 3\rho)
$$
\n
$$
\int H^{2} = \frac{4\pi}{3} \alpha^{2} (\rho + 3\rho)
$$
\n
$$
\int H^{2} = \frac{4\pi}{3} \alpha^{2} (\rho + 3\rho)
$$
\n
$$
\int H^{2} = \frac{8\pi}{3} \alpha^{2} \rho - K
$$
\n
$$
\int H^{2} = \frac{8\pi}{3} \alpha^{2} (\rho + 3\rho)
$$
\n
$$
\int H^{2} = \frac{8\pi}{3} \alpha^{2} (\rho + 3\rho)
$$

Exerase 2

Compute the conoving distance at which we see the photons as steady. Is A possible we see an object moving faster than light? If yes, explain why. \rightarrow Uph= 0 <u>dr</u> = c = 1 $\Gamma_{ph} = \Omega f$ $\frac{v}{dt} = \frac{d}{dt} \left(ar \right) = H r_{ph} + \left(\frac{v}{ph} \right)$ $\sigma_{\bullet}=0 \qquad \longrightarrow \qquad H\, \text{V} \, \text{p} \text{h} \, + \, \sigma \text{p} \text{h} =0$ $Har + 1 = 0 \rightarrow r =$ $\frac{\lambda}{\alpha \mathsf{H}}$

EXERCISE 3 Show using the 2nd F. eq. and p= up that $a > 0 \iff w < -\frac{1}{3}$. $D = \frac{w\rho}{\sqrt{w^2 - 4\left(\frac{w}{w}\right)^2 - 4\left(\frac{w}{w}\right)^2}}$ $\frac{\ddot{a}}{a} = -\frac{a\pi}{3} \left(9 + 3p \right) = -\frac{a\pi}{3} p \left(1 + 3w \right)$ $\ddot{A} = \frac{4\pi}{3} \int \alpha (1+3\omega)$ $\ddot{Q} > Q \longrightarrow 1+3w< Q \longrightarrow w<1/2$

 $Exercse$ 4 Find the integral relation between t and T. Rewrite the definition of commoning posetide horizou do in torms of lina and the Hubble reading H. Then write the comoving Hubble radius 1/att in terms of a only (hint use lot F.q. and equation of state; set K=O). Integrate the expression you found to get a result for dp. What is the druinant contribution in the Λ CDH model $(RD + MD)$. What happers of we assume there is a posted of $\ddot{a} > O$ in the Early Universe? $dt = \sigma d\tau \implies \tau_{-}\tau_{0} = \int_{1}^{t_{0}} \frac{dt^{s}}{a(t^{s})}$ $\frac{C_{\text{obolving}}}{d\phi(r)} = \rho r r^{k} dr$
 $d\phi(r) = \frac{d\phi(r)}{dr} = \frac{d\phi(r)}{dr} = \frac{d\phi(r)}{dr} = \frac{d\phi(r)}{dr}$ $=\int_{\frac{L}{a}}^{\frac{L}{a}} \frac{1}{a(t')} dt' d\theta = \int_{\frac{a}{a}}^{\frac{a}{a}} \frac{d\theta}{\theta a}$
= $\int_{\frac{A}{a}}^{\frac{a}{a}} d\theta a = \int_{\frac{A}{a}}^{\frac{a}{a}} d\theta a$

 $=0$, $\rho = W\rho$

$$
\frac{d\rho}{dt} = -3H\rho (1+w) = -3(1+w)\frac{d}{\alpha}
$$
\n
$$
\frac{d\rho}{s} = -3(1+w) H(t) dt = -3(1+w)\frac{d\alpha}{\alpha}
$$
\n
$$
\frac{d\rho}{s} = -3(1+w) H(t) dt = -3(1+w)\frac{d\alpha}{\alpha}
$$
\n
$$
\rho = \int_{3}^{3} (\frac{\alpha}{\alpha_{1}})^{-3(1+w)}
$$
\n
$$
\frac{d}{s} = \sqrt{\frac{8\pi}{3}} \cdot \sqrt{\frac{8\pi}{3}} \cdot \frac{(\alpha}{\alpha_{0}})^{-3_{2}(1+w)}
$$
\n
$$
\frac{d}{s} = \sqrt{\frac{8\pi}{3}} \cdot \frac{(\alpha}{3}) \cdot \frac{(\alpha}{3})^{-3_{2}(1+w)}
$$
\n
$$
\frac{d}{s} = \sqrt{\frac{8\pi}{3}} \cdot \frac{(\alpha}{3})^{-3_{2}(1+w)} d\alpha
$$
\n
$$
\frac{d}{s} = \sqrt{\frac{(\alpha}{3})^{2}(1+x)} \cdot \frac{(\alpha}{3})^{-3_{2}(1+w)} d\alpha
$$
\n
$$
= \sqrt{\frac{(\alpha}{3})^{2}(1+x)} \cdot \frac{(\alpha}{3})^{-3_{2}(1+x)} d\alpha
$$

 $\frac{1}{3}$ $\frac{a}{3}$ $\frac{1}{3}$ \rightarrow $(1+3w)$ <0 $\frac{d}{dt}$ $\left(\frac{1}{aH}\right)$ < 0 Hubble radius shrinks major contribution from early times $M_{\lambda} = \frac{2c}{(1+3w)} \frac{a_{\lambda}^{1/2} (1+3w)^{20}}{a_{\lambda} + 3w \times 0}$ as $\rightarrow \infty$ Indeed of in the stoudard scanars Mi=0, of noticly $\ddot{a} > 0$ we
push to Mi=- 00 the starting point i (=BB).

EXERCISE 5 Derre the redshift at equality knowing \mathcal{L}_m and \mathcal{R}_r . Derive $\Omega_{\kappa}(t)$ Knowing Ω_{κ}° and Ω_{κ}^{κ} . $S_{\ell m} = \frac{Q_r}{\ell m} \longrightarrow \frac{Q_{\ell q} = \frac{Q_r^o}{\ell m}}{\ell m} = \frac{1}{\ell m} \longrightarrow \frac{Z_{eq}}{R} = \frac{Q_m^o}{\ell m} = 1$ $\n *l* \rightarrow 0.3 / *l* \rightarrow R.A r 10^{-5} \rightarrow 2923570$ $\frac{\mathcal{Q}_{\kappa}(t)}{\mathcal{Q}_{\kappa}^{\circ}} = \frac{(\alpha_{o}H_{o})^{2}}{(\alpha H)^{2}}$ $\frac{ND+RD: H^{2} = H_{o}^{2} \left[\Omega_{m}^{0} \left(\frac{\Omega_{o}}{\Omega}\right)^{3} + \Omega_{r}^{0} \left(\frac{\Omega_{o}}{\Omega}\right)^{4}\right]}{1 - \Omega_{c}^{0} \left(\frac{\Omega_{o}}{\Omega}\right)^{4}}$ At equality: $\Omega_{r} = \Omega_{m}$ $\Omega_{m}^{\circ} = \Omega_{r}^{\circ} \xrightarrow{\alpha_{0}} \qquad \longrightarrow \Omega_{r}^{\circ} = \alpha_{\alpha} \Omega_{m}^{\circ}$ \rightarrow $H^2 = H^2_{\rho} \Omega^{\circ}_{\mu\nu} \left[\left(\frac{\theta_{\alpha}}{\theta_{\alpha}} \right)^3 + \left(\frac{\theta_{\alpha}}{\alpha} \right)^4 \right] =$ = $H_0^2 \Omega_m^{\circ}$ $\left(\frac{a_0}{\alpha}\right)^4 \left[\frac{a}{a_0} + a e q\right]$ = $= H_o^2 \Omega_m^{\circ} a^{-4} (a + a_{eq})$ $Q_{\kappa}(t) = Q_{\kappa}^{\circ} \frac{(d_{\sigma}H)^{2}}{\alpha^{2}H^{2}J^{2}_{\kappa\mu}\alpha^{-4}(\alpha+\alpha_{\mathbf{q}})}$ $=\frac{\Omega_{\kappa}^o}{\Omega_m^o} \frac{\Omega_{\kappa}^2}{(\Omega_{\kappa} \Omega_{\kappa q})}$

V EXERASE 6

2 component Universe : find a solution for the scole footor in
the presence of both mother and radioticu.
(hint: work in conformed time)

 $4h^2 = \frac{8\pi}{3} \alpha^2 \beta$
 $4h^3 = \frac{4\pi}{3} \alpha^2 \left(\beta_t + 3p_t \right) \longrightarrow \frac{\alpha^2}{3} - \left(\frac{\alpha^3}{3} \right)^2 = \frac{4\pi}{3} \left(\beta_t + 3p_t \right) \alpha^2$

$$
\frac{\Delta^{n}}{\alpha} = -\frac{4\pi}{3} \left(\beta t + 3\beta t \right) \alpha^{2} + \frac{8\pi}{3} \beta t \alpha^{2} = \frac{4\pi}{3} \left(\beta t - 3\beta t \right) \alpha^{2}
$$

$$
\alpha^{n} = \frac{4\pi}{3} \left(\beta t - 3\beta t \right) \alpha^{3}
$$

 $f t = \rho f + \rho m$

At equilibrium: pr= pm = fc $\int r = \int r^q \left(\frac{\alpha q}{\alpha}\right)^4 = \frac{\int q}{\lambda} \left(\frac{\alpha q}{\alpha}\right)^4$ $\int m = \int m \left(\frac{\alpha q}{\alpha}\right)^3 = \int q \left(\frac{\alpha q}{\alpha}\right)^3$ $\rightarrow \int e^{-\int \frac{\rho_{\alpha}}{2} \left(\frac{(\rho_{\alpha}}{\alpha})^{3} + \left(\frac{\rho_{\alpha}}{\alpha} \right)^{4} \right)}$

$$
\int e^{-3} \arctan \theta = \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{1}{3} \int e^{-3} \arctan \theta
$$
\n
$$
\int e^{-3} \arctan \theta = \frac{
$$

 $2009(17802)$ $a_{9}\left(\frac{\pi}{3}\sqrt{q}a_{9}^{2}\right)$ $a(\tau)$ $\left(\frac{4\pi}{3}\right)^{eq}$ $\frac{\pi}{3}$ fe τ ₌ \rightarrow $\int_{-4}^{2} + 2\left(\frac{\tau}{\tau_{4}}\right)$ $\frac{\tau}{\tau_{*}}$ $=$ α_{φ}

 $T_{*} = \left(\frac{\pi}{3} \int q \alpha_{eq}^{2} \right)^{-1/2}$

V Exercise 7

Frou statistical mechanics aussderations, we can write the energy density and the pressure of particles as. SE 7

Solved unediantes actividations, we can unite the energy

presente of particles as:
 $\int \int \tilde{f}_i - \tilde{g}_i \int \frac{d^3k}{(2\pi i)^3} E \int_1^1(E)$ $E(k) = \sqrt{IRi^2 + m_1^2}$
 $\int \tilde{f}_i = \tilde{g}_i \int \frac{d^3k}{(2\pi i)^3} \frac{k^2}{3E} \int_1^2(E)$ it q - > it quantifies the number of particles in a volume element of phase space $f(\bar{x}, \bar{p}, t)$ M_{i} = g_3 $\int \frac{d^3k}{(2\pi)^3} \int_0^1 E$ (number density) where q_{λ} are the degrees of freedom of particle i and f_{λ} the phase-space where q , are the degrees of freedou of pretide i aud f, the phas
distribution function. fi= filE) in a hourogeneous and isotropic Universe $1)$ Show that for where relativistic particles $(K>>m)$ pi = $\frac{1}{3}$ β 2) Derive from the equation of state how p scales with the scale factor for both radiation (ultra-relativistic) and matter (nav-relativistic) 3) Suppose the Universe is at thermal equilibrium, than \int_{0}^{1} f^{max} is at thermal equilibrium, then
 f^{max} = $\frac{1}{e^{\lambda}}$ + ferminals
 f^{max} = $\frac{1}{e^{\lambda}}$ + ferminals with T a common temperature. Find m_{λ} , for white-relativitie particles. (hnt: lKl>>m, mect) NB: for bosous MEM (otherwise fco), while Le fernious no restrictions , but observationally ^M sull . 4) Compare g(a) with g(T) for ultre-relativistic particles $5)$ Find Mi, β i for mon-relativistic particles (hint: m ssT, Keem) NB: T<< Mi-Mi (dikute system) 6) Compute Stot . Which terr dominates ?

1)
$$
E = |k| \rightarrow px = q_{\lambda} \int \frac{d^{2}k}{(2\pi)^{3}} \frac{E}{3} \int_{\lambda}^{2} (E)
$$

\n2) $\int k \cos^{3}(4w)$ $w = 0$: $\int k \sin^{3} 3 \sec^{3} 4$
\n $w = \frac{1}{3}$: $\int k \cos^{3} 4$
\n3) $\int k = \frac{1}{\exp{(E-\mu)} + \pm 1}$
\n $\int_{1}^{b} x \frac{1}{\exp{K_{\tau}-1}}$ $\int_{1}^{b} x \frac{1}{\exp{K_{\tau}-1}}$
\n $= \frac{q_{\lambda}}{2\pi^{2}} \int_{0}^{\infty} \frac{4\pi k^{2}dk}{\exp{K_{\tau}-1}}$ $\int_{0}^{a} x \frac{1}{\exp{(K_{\tau})} + \frac{1}{4}}$
\n $= \frac{q_{\lambda}}{2\pi^{2}} \int_{0}^{\infty} \frac{k^{2}}{\exp{K_{\tau}-1}}$ $\int_{0}^{a} \frac{x^{2}}{\exp(\frac{k^{2}}{4}) + \frac{1}{4}} dx = 2\frac{2}{7}(0) \text{e}^{3}$
\n $= \frac{q_{\lambda}}{2\pi^{2}} \int_{0}^{\infty} \frac{k^{2}}{\exp{K_{\tau}-1}}$ $\int_{2}^{a} (b\cos\theta)$
\n $\int_{2}^{2} x \frac{q_{\lambda}}{2\pi^{3}} \int_{0}^{a} x \frac{1}{\exp{K_{\tau}-1}}$ $\int_{\frac{1}{2}}^{a} \frac{x}{\exp{\frac{K_{\lambda}}{2} + \frac{1}{4}}} dx = \frac{\pi^{2}}{10} \text{e}^{3}$
\n $= \frac{\pi^{3}}{3} \cdot 3 \cdot 1^{-4} \int_{2}^{1} \frac{1}{2} (\text{beam}) \int_{0}^{a} \frac{x^{3}}{\exp{\frac{K_{\lambda}}{2} + \frac{1}{10}}} dx = \frac{\pi^{4}}{10} \text{e}^{4}$
\n $\int x \frac{1}{3} \text{cm} \int_{2}^{a} x \frac{1}{3} \text{cm} \int$

$$
E = \sqrt{K^{2} + m^{2}} = m \sqrt{4 + \frac{K^{2}}{m^{2}}} \approx m \left(4 + \frac{1}{2} \frac{K^{2}}{m}\right) = m + \frac{K^{2}}{2M}
$$
\n
$$
\frac{1}{\sqrt{4}} = \frac{4}{\exp\left(\frac{K^{2} - \mu}{\mu}\right) + \frac{1}{2} \frac{1}{\exp\left(\frac{K^{2} - \mu}{\mu}\right) + \frac{1}{2} \frac{1}{\
$$

$$
\rightarrow \int_{i} = M_{i} \left(M_{i} + \frac{3}{2}T \right)
$$

6) \int_{0}^{1} \int_{0}^{1} tot = \int_{0}^{1} \int $e^{-(m_1-\mu_2)}$ $mxT \rightarrow \sim 0$

Exercre 8

Derive the required field range ϕ_{λ} - ϕ_{β} to get N=60, with a linear psteedral $V(\phi) = \dot{\phi}$ $N = \int_{t_1}^{t} H(t)dt = \int_{t_2}^{t} H(t) dt dt dt = \int_{t_1}^{\phi} H(t) dt dt$ $=\frac{V^1}{3H}$ $N = \int_{0}^{\phi} \frac{3H^{2}}{V} d\phi = -\frac{1}{M_{Pl}^{2}} \int_{0}^{\psi} \frac{V}{V} d\phi$ Φ = $H^2 \approx \frac{V}{3H_{eq}^2}$ $\frac{1}{M_{pq}^2} \int_{\phi}^{1} \phi \, d\phi = \frac{1}{2M_{pq}^2} \left(\phi_{\lambda}^2 - \phi_{\ell}^2 \right)$ $N = V = \Phi$ $tan \frac{M_{\text{N}}^2}{2}$ $\frac{V'}{V}$ $=\frac{H_{\rho\ell}^2}{2}\frac{1}{\Phi_{\ell}^2}$ \mathcal{E}_{0} $\phi_f^2 = \frac{M_{Pl}^2}{2}$ From Friedmann oqueskans ä>o when ϵ <1. \Rightarrow ϵ = ϵ and I $\left(\overrightarrow{D_{i}}-\frac{H_{R}^{2}}{2}\right)=60$ ϕ^2 = 120.5 M/r

EXERCISE 9 The dimensionless power spectrum \triangle^2 q (k) is defined as: Δ^2 g(k) = $\frac{K^3}{2\pi^2}$ Pg(k) where : $\langle \mathcal{G}_{\vec{\kappa}} \mathcal{G}_{\vec{\kappa}} \rangle = (2\pi)^3 \mathcal{S}^{\omega}(\vec{k} + \vec{k}) P_{\vec{\kappa}}(k)$ Kuowing that $\Delta \zeta$ (K) = 2×10^{-9} , which is the value of the mess μ that the inflaton field has to have, considering $V=\frac{1}{2}$ m² Φ^2 ? (<u>NB</u> : evalude ⁹ît when the lorpert 1 leaves the horzon, Le beginning of inflation) Since ^G approaches ^a constant on super-honzon sceles , we can evaluate the spectrum at horzar crossing and the determines the future spectrum until and y appearant contract of appeller not a
spectrum at horrar creating oud the determines The dimensionless sador power spectrum has then the following form: \triangle^2 (K) = $\frac{1}{8\pi^2}$ $\frac{H^2}{H_P^2}$ $\frac{1}{\epsilon}$ $\left| \frac{1}{k \cdot \epsilon \cdot H} \right|$ H^2 = $\qquad \qquad \vee$ $\qquad \qquad \wedge^2$ g(k) \approx $\frac{1}{12\pi^2 M_\rho^6} \frac{V^3}{V^2}$ $3M_{Pl}^2$ For a potential $V=\frac{1}{2}m^2\,\Phi^2$ we then have: $\Delta^{2}g(k) = \frac{1}{2(1-3.116)}$ m² ϕ^{4} $96\pi^2 M_P^6$...

When lopest λ leaves the horizon we are of the beginning of inflation! S maller λ need more time to grow till H^{-1} . When $\lambda_{\text{phys}} \sim H^{-1}$, a $\lambda_{\text{coup}} \sim H^{-1}$, a $\frac{a}{K} \sim H^{-1}$, $K \sim aH$ ϕ i is computed as in the previous exercise : $\phi_{\tilde{a}} = 15 \text{ Mpc}$ $\Rightarrow m = 6.8 \times 10^{-6}$ Mpc

THEORETICAL PARENTHESIS

 $ds^{2} = a^{2}(t) [-dT^{2} + b_{T}^{2}dx^{T}dx^{T}]$ Enctides 3d
 $ds^{2} = a^{2}(t) [-(1+20) dT^{2} + 2B_{1}dx^{1}dT + (b_{T}^{2})dF^{T}dx^{T}]$ decompartion - transverse and traceless tensor hij ST / gravitational naves hy _ 2 plartations, which evolve independently as 2 scolor folds $P_{\varsigma}(k) = \frac{1}{2\epsilon M_{\varsigma}^{2}} \left(\frac{H_{*}}{2\pi}\right)^{2} \left(\frac{k}{k_{\varsigma}}\right)^{3-2\nu} = As \left(\frac{k}{k_{\varsigma}}\right)^{M_{s}-1}$ $A_s = \frac{H_{\nu}^2}{8\pi^2 \Sigma H_{\nu}^2}$, $M_s = 1 - 6\epsilon_{v} + 2M_{v}$ $P_n(k) = A_r (k)_{\text{km}}^{m_r}$ $m_{\tau} = 2E_v$ Scale invariance; $M_{s=1}$ $M_{t=0}$ $r = \frac{A_r}{A_s} = \frac{gH_m^2}{\phi^2} = A G E$

Exercise 10 Find the predictors for r and Ms of the potental $V = \Phi$. $\begin{cases} \frac{m_{s-1}}{s} = \frac{6\epsilon + 2\eta}{s} \\ \frac{m_{s-1}}{s} \end{cases}$ $r = 165$ redrokous for Γ and M_s of
 $\begin{cases} M_{s-1} = 6\xi + 2\eta \\ \Gamma = 46\xi \end{cases}$
 $\xi = \frac{N_e^2}{2} (\frac{V}{V})^2$, M_f

potential: $\Sigma = \frac{N_{P}^{2}}{2} \left(\frac{V}{V}\right)^{2}$, $M_{P} N_{P}^{2} V_{V}^{4}$ With this potential: $E = M_p^2$ 20^2 $\eta = 0$ \rightarrow M_{s} = $1-3\frac{H_{P}^{2}}{\phi^{2}}$ $1=\frac{8H_{P}^{2}}{\phi^{2}}$ Evaluating of horzon crossing for the lorpest wovelerght: Pic 11 Mpp $M_s \approx 0,975,$ $V \approx 0,066$

Looking at this plot (10.1103/Phys RevLett. 121, 221301) we see that these values for Ms and r are compatible with the current $obsenations$, except f o the BK15 result, within 2σ . We conclude that $\sqrt{\alpha \Phi}$ is a viable model of the observed universe .

Exerase 11

Compute the recambination temperature, Knowing that it is defined when 8% of protons are "caught" into hydrogen stoms , ⁱ .e we have 10% free electrons. p+e⁻ $\longleftrightarrow H+ \check{Y}$ When $T < B$ H = 13.6 el electrous get trapped. Start from the Boltzmarn equation $\frac{dm}{dt}$ + 3Hmp = $m_{P}^{eq}m_{e}^{q}$ covo $\left(\frac{m_{H}m_{B}}{m_{e}^{eq}m_{B}^{eq}}-\frac{m_{P}m_{e}}{m_{P}^{eq}m_{e}^{eq}}\right)$ If reaction note MSSH - sins much loger than lhs. Only if reaction nate I iss M so VMS which looper Than
way is the individual terms in (-) coucel separately: SAHA EQUATION E $\frac{M_H M_K}{(M_H M_K)_{eq}} = \frac{M_P M_E}{(M_P M_E)_{eq}}$ $M_1 = \mu_3 + \mu_4$ /chemical equilibrium) Photons of epicibrium - Mr=Mo Free dectrous prodieur: $\frac{m_H m_S}{(M_H m_S)_{eq}} = \frac{m_P}{(m_P)^2}$

epictibrium -> Meganner

and meganner -> Meganner

and meganner -> Meganner

bookser -> Xe $\frac{m_{e} m_{p}}{m_{H}} = \frac{m_{e}^{3} m_{p}^{3}}{m_{H}^{3}}$
frocher: $Xe = \frac{m_{e}}{m_{e} + m_{H}} = \frac{m_{p}}{m_{p} + m_{H}}$ $m_\pi^{\mathbf e}$ $g_i\left(\frac{m_i\tau}{2\pi}\right)^{3i}$ exp $\left(\frac{\mu_i-m_i}{\tau}\right)$, $g_f =$ $9e = 2$ NB: Me ~ 0.5 MeV -> non-relativistic
Mp ~ 1 GeV --> non-relativistic